Our website uses cookies to enhance your experience.
By continuing to use our website, you are agreeing to our use of cookies. Necessary cookies are always enabled.
You can read more about our
Cookie Policy
in our Privacy policy
We value your privacy
Strictly Neccessary
Essential cookies enable core website functionality,
such as secure logins and preference settings, without tracking personal activities or collecting data for ads.
They ensure the site's proper operation and legal compliance, remaining always active
Preferences
Preference cookies enhance your browsing by remembering settings like language and regional preferences,
tailoring the site to your needs without tracking activity across other websites
Statistical
Statistics cookies gather anonymous data on site interactions and page visits to help improve functionality,
ensuring a smoother user experience without personally identifying users
Marketing
Marketing cookies track browsing habits across websites to deliver relevant,
tailored ads, enhancing value for publishers and advertisers by focusing on individual preferences.
What’s the Difference Between Carbon Fiber and Kevlar® ?
Here we discuss the similarities and differences between Carbon Fibre and Kevlar, how they are made and the benefits and downsides of each. You can purchase Carbon Fibre in small quantities on our e-commerce site sold by the metre and Carbon Fibre and Aramid fabrics, including Kevlar from 10m up from our Leeds and Newry depots.
What is Carbon Fibre?
Carbon Fibre is long thin strands mostly made from carbon atoms which are bonded together in microscopic crystals.
The crystal is aligned which makes them incredibly strong. They are then twisted together, very similar to the cotton-producing process, into yarn. The yarn is then woven together to create Carbon Fibre Cloth. There are different types of weave for carbon fibres:
Plain: Also known as bidirectional standard over/under very easy to handle, because of a tight weave.
Twill: Diagonal pattern from an over-over and under-under It is the most recognisable carbon fibre pattern and offers a looser form than a plain design, making it better for more complex shapes.
Satin: Satin has a brick like resemblance which comes from a number over-overs (typical four or eight) to one under. The pattern is not the easiest to work with and is best suited to complex curves.
Unidirectional: As the name suggests, all the yarn is one directional. There is no weave, and it is often held together with a thread, though this does not alter the structure of the carbon fibre. It is most suited to moulds that have a force acting only on one axis
How is Carbon Fibre Made?
Each manufacturer of carbon fibre has their way of manufacturing the material to give it its strength or aesthetic selling features. However, as a rule, all carbon fibre comes from organic polymers which are strings of molecules held together by carbon atoms.
The PAN (polyacrylonitrile) manufacturing process accounts for around 90% of all carbon fibre manufacturing and is a five-step process:
Polyacrylonitrile is mixed with other items and spun to create fibres which are stretched and cleaned.
Chemicals are then added to stabilise
Heat gets added, high temperatures help form tightly bonded carbon crystals.
Fibres are oxidised to improve bonding properties.
Finally, strands are coated and wound into different sized threads. Before a carbon fibre becomes a composite material a polymer gets added and heat, pressure or a vacuum bind the thread with the polymer to create a composite material.
As with any manufacturing process, the materials used will create specific qualities and effects in the carbon fibre, thus allowing for grading and application differences.
What are the Benefits of Carbon Fibre?
Carbon fibre is well known for its low weight and high strength, making it the ideal advanced composite material in the Marine, Automobile and Aerospace industries. Key benefits include:
Excellent strength to weight ratio
High heat resistance
High chemical/corrosion resistance (when used with the correct resin)
Extremely flexible, making it suitable for a range of applications
Excellent fatigue properties
Works with a variety of different materials
Electrical and thermal conductivity
Possesses a low coefficient of thermal expansion
What are the Downsides of Carbon Fibre?
Despite having a wide range of advantages, carbon fibre is still a relatively new composite material which does come with some disadvantages:
Expensive compared to other composite materials
More labour intensive to manufacture
Not currently recyclable, often carbon fibre is used to replace steel or aluminium, both of which are recyclable materials
Will break/shatter when pushed beyond its capabilities
If damaged, it must be replaced rather than repaired like metal structure
Kevlar is a fabric that is exclusively made by Du Point. It is created using aramid polymers where the molecules get arranged in parallel lines; the fibres are then knitted tightly together.
How is Kevlar® Made?
There are two steps to making Kevlar.
The first step is a chemical process that involves producing the basic plastic from which Kevlar gets made into long string fibres.
The second part of the process often is referred to as a condensation process. During this process the molecular chains line up parallel to each other and are cross-linked with hydrogen bonds, giving Kevlar its high-tensile strength.
What are the Benefits of Kevlar®?
Strong, while still lighter than steel
Good heat resistance – starts to decompose around 450 ° C
Good chemical resistance
Unaffected by moisture
What are the Downsides of Kevlar®?
Poor compressive strength – resistant to squashing and squeezing
More sensitive to environmental factors than other materials
Requires specially made scissors to sever dry fabric
Once laminated it can only be pierced with specially made drill bits
Carbon is best suited for areas that require a higher stiffness and strength. While carbon fibre offers the best strength and rigidity to weight in the industry; it is also generally the most expensive of reinforcements.
Carbon fibre is also much more straightforward to cut, sand and machine in comparison to Kevlar, which requires specially made drill bits once laminated.
That said, Kevlar offers a better abrasive strength than carbon fibre, which is why it commonly associated with bulletproof vests. Kevlar is also better in extreme temperatures than carbon fibre, which some indicate make it better suited in the marine industry.
For more information on Tricel Composites reinforcement materials, or to speak to one of our technical team about the best-advanced composite for you, visit our contact us page.