

RESIN ORTHO POLYLITE 32032-00

Product Name:	Resin ORTHO Polylit 32032-00
	1570456 Rev. 0
Revision Date:	11-Aug-2023
	According to Regulation (EC) No. 1907/2006

Identification of the substance/mixture and of the company/undertaking

Product Identifier 1.1.

Product Name: Resin ORTHO Polylit 32032-00

Chemical Name: Polyester Resin

Pure Substance/Mixture: Mixture

1.2. Product relevant identified uses of the substance or mixture and uses advised against

Identified uses: Casting Resin, Panel Resin.

1.3. Details of the supplier of the safety data sheet

Tricel Composites (GB) Limited Tricel Composites (NI) Limited

Unit A, Foxway, Unit 4, Milltown Ind. Estate, Greenan

Off Atkinson Street, Road. Warrenpoint, Newry

Leeds, West Yorkshire, Co. Down,

LS10 1PS. BT34 3FN.

Tel: +44 (0)113 270 3133 Tel: +44 (0)284 175 3738

1.4. Emergency Telephone Number

Emergency medical information: 8am-10pm (seven days) contact National Poisons

Information Centre, Beaumont Hospital, Dublin 9 DOV2NO, Ireland.

Telephone Number: +353 (0)1 809 2166

Leeds:	Newry:
Tel: +44 (0)113 270 3133	Tel: +44 (0)284 175 3738

1.4.1. Poison Information Centre Telephone Number

European emergency phone number: 112

UK: National Poisons Emergency Number: 0344 892 0111

Ireland: National Poisons Information Centre (NPIC) Telephone Healthcare

Professionals: +353 (01) 809 2566. (24 hour service) Telephone Members of

Public: +353 (01) 809 2166. (8.00 a.m. to 10.00 p.m. 7 days a week)

2. Hazards Identification

2.1. Classification of the substance or mixture

Classification of the substance or mixture - GHS/CLP (nº 1272/2008)

Skin Corrosion/Irritation	Category 2 - (H315)
Serious Eye Damage/Eye Irritation	Category 2 - (H319)
Skin Sensitization	Category 1 - (H317)
ReproductiveToxicity	Category 2 - (H361d)
Specific Target Organ Toxicity (Single Exposure)	Category 3 - (H335)
Specific target organ toxicity - repeated exposure	Category 1 - (H372)
Chronic Aquatic Toxicity	Category 3 - (H412)
Flammableliquids	Category 3 - (H226)

2.2. Label elements

Signal Word: Danger

Contains: Methyl methacrylate, Styrene

2.2.1. Hazard Statements

Hazard statements

H315 - Causes skin irritation

H317 - May cause an allergic skin reaction

H319 - Causes serious eye irritation

H335 - May cause respiratory irritation

H361d - Suspected of damaging the unborn child

H372 - Causes damage to organs through prolonged or repeated exposure if inhaled

H412 - Harmful to aquatic life with long lasting effects

Physical hazards

H226 - Flammable liquid and vapour

EU H - Phrases

EUH208 - Contains alpha-methyl styrene, cobalt octoate. May produce an allergic reaction

2.2.2. Precautionary Statements

P210 - Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking

P243 - Take action to prevent static discharges

P260 - Do not breathe vapour

P273 - Avoid release to the environment

P280 - Wear protective gloves/protective clothing/eye protection/face protection P302 + P352 - IF ON SKIN: Wash with plenty of soap and water P304 + P340 - IF INHALED: Remove person to fresh air and keep comfortable for breathing

P305 + P351 + P338 - IF IN EYES: Rinse cautiously with water for several minutes.

Remove contact lenses, if present and easy to do. Continue rinsing

P403 + P233 - Store in a well-ventilated place. Keep container tightly closed

2.3. Other Hazards

PBT/vPvB see section 12.5.

3. Composition/Information on Ingredients

3.1. Mixtures

Hazardous Components

Chemical Name	EC-No	REACH	CAS-No	Weight	GHS Classification	M-Factor	M-Factor	Concentrati
		Registration		percent		(acute)	(chronic	on limit (%)
		Number)	
Styrene	202-851-5	01-2119457861-32	100-42-5	25 - 35	Flam. Liq. 3 (H226)			
					Repr. 2 (H361d)			
					Acute Tox. 4 (H332)			
					Skin Irrit. 2 (H315)			
					Eye Irrit. 2 (H319)			
					Asp. Tox. 1 (H304)			
					STOT SE 3 (H335)			
					STOT RE 1 (H372)			
					Aquatic Chronic 3			
					(H412)			
Methyl	201-297-1	01-2119452498-28	80-62-6	1 - 10	Flam. Liq. 2 (H225)			
methacrylate					STOT SE 3 (H335)			
					Skin Irrit. 2 (H315)			
					Skin Sens. 1 (H317)			
Propylidynetrime	201-074-9	01-2119486799-10	77-99-6	0.1 - < 1	Repr. 2 (H361fd)			
than								
ol								
alpha-methyl	202-705-0	01-2119472426-35	98-83-9	0.1 - < 1	Flam. Liq. 3 (H226)			STOT SE 3::
styrene					Asp. Tox. 1 (H304)			C>=25%
					Skin Sens. 1B (H317)			
					Eye Irrit. 2 (H319)			
					STOT SE 3 (H335)			
					Repr. 2 (H361d)			
					Aquatic Chronic 2			
					(H411)			
Quaternary	270-325-2	01-2119983287-23	68424-85-1	0.1 - < 1	Acute Tox. 4 (H302)	10	1	
ammonium					Skin Corr. 1B (H314)			
compounds,					Eye Dam. 1 (H318)			
benzyl-C12-16-					Aquatic Acute 1			
alkyldi methyl,					(H400)			
chlorides					Aquatic Chronic 1			
					(H410)			

Revision date: 11-Aug-2023 1570456 Rev. 0

cobalt octoate	205-250-6	01-2119524678-29	136-52-7	0.01 - < 0.1	Skin Sens. 1A (H317) 1	
					Eye Irrit. 2 (H319)	
					Repr. 1B (H360Fd)	
					Aquatic Acute 1	
					(H400)	
					Aquatic Chronic 3	
					(H412)	

Additional information Acute Toxicity Estimate See Section 11 for more information

For the full text of the H-Statements mentioned in this Section, see Section 16

4. First Aid Measures

4.1. Description of First Aid Measures

General advice Show this safety data sheet to the doctor in

attendance

Do not breathe dust/fume/gas/mist/

vapours/spray

Eye Contact Rinse thoroughly with plenty of water, also

under the eyelids.

Keep eye wide open while rinsing.

If symptoms persist, call a physician

Skin contact Wash off immediately with soap and plenty

of water removing all contaminated clothes

and shoes

If skin irritation persists, call a physician

Inhalation Move to fresh air

If not breathing, give artificial respiration

Consult a physician

Ingestion Do NOT induce vomiting

Rinse mouth.

Consult a physician

See section 8 for more information

4.2. Most important symptoms and effects, both acute and delayed

Eye Contact Irritating to eyes

Skin contact Irritating to skin

May produce an allergic reaction.

Inhalation Harmful: danger of serious damage to health

by prolonged exposure through inhalation

Irritating to respiratory system May produce

an allergic reaction.

Ingestion Ingestion may cause gastrointestinal

irritation, nausea, vomiting and diarrhoea.

4.3. Indication of any immediate medical attention and special treatment

Notes to physician No information available

5. Firefighting Measures

5.1. Extinguishing media

Suitable Extinguishing Media: Dry chemical, Foam, Carbon dioxide (CO 2),

(closed systems)

Extinguishing Media Which Must

not be Used for Safety Reasons: Do not use a solid water stream as it may

scatter and spread fire.

5.2. Special Hazards arising from substance or mixture

Special exposure hazards arising from the substance or preparation itself, combustion products, resulting gases:

Vapours may form explosive mixtures with air. Most vapours are heavier than air.

They will spread along ground and collect in low or confined areas (sewers, basements, tanks) Heating or fire can release toxic gas: Carbon monoxide

5.3. Advice for Firefighters

Special protective equipment

for fire-fighters Wear self-contained breathing apparatus

and protective suit

Other information Cool containers / tanks with water spray.

Fire residues and contaminated fire

extinguishing water must be disposed of in

accordance with local regulations.

6. Accidental Release Measures

6.1. Personal precautions, protective equipment and emergency procedures

For non-emergency personnel

Personal precautions Remove all sources of ignition

Heat, flames and sparks.

Take precautionary measures against static

charges.

Ensure adequate ventilation

Use personal protective equipment

For emergency responders Avoid breathing vapours or mists In the event of fire

and/or explosion do not breathe fumes. Use

personal protective equipment

6.2. Environmental Precautions

Environmental precautions The product should not be allowed to enter drains,

water courses or the soil. Do not flush into surface

water or sanitary sewer system

6.3. Methods and Material for Containment and

Cleaning Up

Methods for cleaning up Contain spillage, and then collect with non-

combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations (see section 13)

Todai / Hational regulations (300 300tion 10)

Use clean non-sparking tools to collect

absorbed material

6.4. Reference to other sections

Reference to other sections See section 8 for more information See

Section 12 for additional Ecological

Information

7. Handling and Storage

7.1. Precautions for safe handling

Precautions for safe handling Avoid static electricity build up with connection to

earth

Use only in area provided with appropriate exhaust

ventilation

In case of insufficient ventilation, wear suitable

respiratory equipment

For personal protection see section 8

Prevention of fire

and explosion Keep away from open flames, hot surfaces and

sources of ignition Empty containers may contain

flammable or explosive vapours

Hygiene measures When using, do not eat, drink or smoke Wash hands

before breaks and at the end of workday. Provide

regular cleaning of equipment, work area and

clothing

7.2. Conditions for safe storage, including any

incompatibilities

Technical measures/Storage

conditions Keep in a dry, cool and well-ventilated place.

Keep at temperature not exceeding 30°C

Keep away from heat and sources of ignition.

Materials to avoid Strong oxidizing agents, Peroxides, Reducing agents

metallic GRP Tanks (Reinforced Glass Polyester) **Packaging material**

Unsuitable materials for containers copper, Copper alloys, Bronze, Zinc

Specific end use(s) 7.3.

Specific use(s)

No information available

Exposure Controls/Personal Protection 8.

8.1. **Control Parameters**

Occupational Exposure Limits

Chemical Name	European Union	ACGIH OEL (Ceiling)	The United Kingdom	Ireland
Styrene 100 - 42 - 5	-	ACGIH (2020):	STEL 250 ppm STEL	TWA 20 ppm TWA 85
		TLV-TWA: 10 ppm	1080 mg/m³	mg/m³
		TLV-STEL/C: 20 ppm Notes:	TWA 100 ppm TWA 430	STEL 40 ppm STEL 170
		OTO, A3, BEI	mg/m³	mg/m³
		Critical effects: CNS and		
		hearing impairment, URT		
		irr, peripheral neuropathy		
		visual disorders		
Methyl methacrylate		TWA 50 ppm, STEL 100	STEL 100 ppm STEL 416	TWA 50 ppm STEL 100
80-62-6		ppm (2007)	mg/m³ TWA 50 ppm TWA	ppm
			208 mg/m³	
alpha-methyl styrene	TWA 50 ppm TWA 246	TWA 50 ppm	STEL 100 ppm STEL 491	TWA 50 ppm TWA 246
98-83-9	mg/m³ STEL 100 ppm STEL		mg/m³ TWA 50 ppm TWA	mg/m³ STEL 100 ppm STEL
	492 mg/m³		246 mg/m³	490 mg/m³
cobalt octoate 136-52-		0.02 mg/m³	STEL 0.3 mg/m³ TWA 0.1	TWA 0.1 mg/m³ Sensitizer
7	_		mg/m³ Sen+	

Special hazards arising from the substance or mixture

Biological Standards

Derived No Effect Level (DNEL)

Derived No Effect Level (DNE	L)			
Styrene (100-42-5)				
Туре	DNEL oral	DNEL dermal	DNEL inhalation	Remark
Workers - Long Term -		406 mg/Kg bw/day	85 mg/m ³	
Systemic effect			_	
Workers - Acute Short Term			306 mg/m ³	
- Local effect			_	
Workers - Acute Short term			289 mg/m ³	
- Systemic effect				
General Population - Acute			182.7 mg/m ³	
Short Term - Local effect				
General Population - Acute			174.2 mg/m ³	
Short Term - Systemic effect	t			
General Population - Long	2.1 mg/Kg bw/day	343 mg/Kg bw/day	10.2 mg/m3	
Term - Systemic effect				
Туре	DNEL oral	DNEL dermal	DNEL inhalation	Remark
14/		10.07 / / /	000	
Workers - Long Term - Systemic effect		13.67 mg/kg bw/day	208 mg/m³	
Workers - Long Term - Local		1.5 mg/cm²	208 mg/m³	
effect		i.5 mg/cm	2001119/111	
Workers - Acute Short Term		1.5 mg/cm²		
- Local effect		3,		
General Population - Long		8.2 mg/kg bw/day	74.3 mg/m³	
Term - Systemic effect				
General Population - Long		1.5 mg/cm²	104 mg/m³	
Term - Local effect				
General Population - Acute		1.5 mg/cm²		
Short Term - Local effect				
			•	'
Propylidynetrimethanol (77-	-99-6)			
Туре	DNEL oral	DNEL dermal	DNEL inhalation	Remark
Workers - Long Term -		0.94 mg/kg bw/day	3.3 mg/m³	
Systemic effect				

Revision date: 11-Aug-2023 1570456 Rev. 0

General Population - Long	0.34 mg/kg bw/day	0.34 mg/kg bw/day	0.58 mg/m³	
Term - Systemic effect				
		•		•
alpha-methyl styrene (98-8	3-9)			
Гуре	DNEL oral	DNEL dermal	DNEL inhalation	Remark
Workers - Long Term -		2.8 mg/kg bw/day	246 mg/m ³	
Systemic effect				
Workers - Acute Short Term			492 mg/m ³	
- Local effect				
Workers - Long Term - Local		0.105 mg/cm²		
effect				
General Population - Long	0.1 mg/kg bw/day	1.4 mg/kg bw/day	4.83 mg/m³	
Term - Systemic effect				
General Population - Long		0.052 mg/cm²		
Term - Local effect				
cobalt octoate (136-52-7)				
Туре	DNEL oral	DNEL dermal	DNEL inhalation	Remark
Workers - Long Term - Local			235.1 µg/m ³	
effect				
General Population - Long	175 µg/kg bw/day			
Term - Systemic effect				
General Population - Long			37 μg/m ³	
Term - Local effect				

Predicted No Effect Concentration

(PNEC)

PNEC Component		
Styrene (100-42-5)		
Exposure	Туре	PNEC
Fresh water	PNEC Aqua	0.028 mg/L
Marine water	PNEC Aqua	0.014 mg/L
Intermittent use/release	PNEC Aqua	0.04 mg/L
Fresh water	PNEC Sediment	0.614 mg/Kg.dw

	1	
Marine water	PNEC Sediment	0.307 mg/Kg.dw
Terrestrial Compartment	PNEC Soil	0.2 mg/Kg.dw
STP microorganisms	PNEC STP	5 mg/L
Methyl methacrylate (80-62-6)		
Exposure	Туре	PNEC
Fresh water	PNEC Aqua	0.94 mg/L
Marine water	PNEC Aqua	0.94 mg/L
Intermittent use/release	PNEC Aqua	0.94 mg/L
Fresh water	PNEC Sediment	5.74 mg/kg sediment dw
Terrestrial Compartment	PNEC Soil	1.47 mg/kg soil dw
	PNEC STP	10 mg/L
alpha-methyl styrene (98-83-9)		,
Exposure	Туре	PNEC
Fresh water	PNEC Aqua	0.008 mg/L
Marine water	PNEC Aqua	0.001 mg/L
Intermittent use/release	PNEC Aqua	0.01645 mg/L
Fresh water	PNEC Sediment	0.583 mg/kg sediment dw
Marine water	PNEC Sediment	0.0583 mg/kg sediment dw
	PNEC Soil	0.112 mg/kg soil dw
	PNEC STP	66.15 mg/L
cobalt octoate (136-52-7)	1	'
Exposure	Туре	PNEC
Fresh water	PNEC Aqua	0.62 μg/L
Marine water	PNEC Aqua	2.36 μg/L
STP microorganisms	PNEC STP	0.37 mg/L

Fresh water	PNEC Sediment	53.8 mg/kg sediment dw
Marine water	PNEC Sediment	69.8 mg/kg sediment dw
Terrestrial Compartment	PNEC Soil	10.9 mg/kg soil dw

8.2. Exposure Controls

Occupational exposure controls

Engineering measures Apply technical measures to comply with the

occupational exposure limits.

When working in confined spaces (tanks,

containers, etc.), ensure that there is a supply of air

suitable for breathing and wear the recommended

equipment

Personal protective equipment

General Information Use personal protective equipment.

Respiratory protection Provide a good standard of general ventilation (not

less than 3 to 5 air changes per hour) If exposure

limits are likely to be exceeded / In case of

insufficient ventilation wear

suitable respiratory equipment:

Breathing apparatus with filter Type A (Organic gases and vapours filter conforming to EN 14387,

APF 40 < 1 hour, APF 200 > 1 hour)

Eye protection Safety glasses with side-shields. Do not wear

contact lenses.

Skin and body protection Antistatic boots. Protective shoes or boots. Wear

fire/flame resistant/retardant clothing. Hand

protection Wear chemically resistant gloves (tested

to EN 374) in combination with 'basic' employee

training

Glove material: Neoprene, Nitriles, Viton (R) or

Polyvinyl alcohol

Gloves should be discarded and replaced if there is

any indication of degradation or chemical

breakthrough.

Environmental exposure controls

Environmental exposure controls Do not allow material to contaminate ground

water system.

9. Physical and Chemical Properties

9.1. Information on basic physical and chemical properties

Property	Values	Remark
Physical state	Liquid	
Colour	blue green clear	
Appearance		No data available
Particle size		No data available
Odour	Pungent	
Odour Threshold	0.15 ppm	(styrene) Values related to
		styrene
рН		No data available
pH (as aqueous solution)		No data available
Melting point/range	- 30 °C	Values related to styrene
Freezing Point		No data available
Softening point		No data available
Boiling point	100 - 146 °C	
Flash point	26 °C	Seta closed cup (ISO 3679)
Flammability		No data available

Flammability Limit in Air
Upper 12.5% (styrene)

Lower 1.1% (styrene)

Vapour pressure 1 hPa kPa @20 °C 25°C Values related to

styrene

Vapour density 3.6 - 3.94 (Air = 1)

Density 1.1 - 1.14 g/cm3 23°C

Specific Gravity No data available

Bulk density No data available

Water solubility insoluble Insoluble in

water (Water)

Solubility in other solvents No data available

Partition coefficient: n-octanol/water 3 Values related to styrene

Autoignition temperature 430 - 490 °C (DIN 51794)

Decomposition temperature No data available

Viscosity, kinematic 273 - 364 mm2/s No data available Viscosity, dynamic 300 - 400 cps 23 °C Cone & Plate

9.2. Other Information

Information with regards to physical hazard classes

Property Values Remark **Explosives** No data available Flammable gases No data available No data available Aerosols Oxidising gases No data available No data available Gases under pressure Flammable liquids No data available Flammable solids No data available Pyrophoric liquids No data available No data available Pyrophoric solids Self-heating substances and mixtures No data available Substances and mixtures which, in contact with water, emit flammable No data available gases

Oxidising liquids	No data available
Oxidising solids	No data available
Oxidising Properties	No data available
Organic peroxides	No data available
Corrosive to metals	No data available
Desensitised explosives	No data available

Other safety characteristics

Sensitivity to Mechanical Impact No data available

SAPT (self-accelerating

polymerisation temperature)

Formation of explosible dust/air

mixtures Acid/alkaline reserve

No data available

No data available

Evaporation rate 0.49-3.1 (BuAc = 1)

Miscible No data available
Conductivity No data available
Corrosiveness Gas group No data available
Redox potential No data available
Photocatalytic properties No data available

10. Stability and Reactivity

10.1. Reactivity

Reactivity Product may ignite and burn at temperatures

exceeding the flash point

10.2. Chemical stability

Stability Stable under recommended storage conditions

10.3. Possibility of hazardous reactions

Hazardous reactions In use, may form flammable/explosive vapour-air

mixture.

Hazardous polymerization Polymerisation can occur

10.4. Conditions to avoid

Conditions to avoid Heat, flames and sparks.

Exposure to light.

Take precautionary measures against static

charges.

10.5. Incompatible materials

Incompatible materials Strong oxidizing agents, Peroxides, Reducing agents

10.6. Hazardous decomposition Products

Hazardous decomposition

products Incomplete combustion and thermolysis produces

potentially toxic gases such as carbon monoxide

and carbon dioxide

11. Toxicological Information

11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008

Acute toxicity

Inhalation Harmful: danger of serious damage to health by prolonged exposure

through inhalation

Irritating to respiratory system

Ingestion: Ingestion may cause gastrointestinal irritation, nausea,

vomiting and diarrhoea.

Chemical Name	LD50 Oral	LD50 Dermal	LC50 Inhalation	Read-across (Analogy)
Styrene 100-42-5	5000 mg/kg (Rat)	> 2000 mg/kg bw (Rat)	11.8 mg/L (Rat) 4h CSR	
		24h OECD 402		
Methyl methacrylate	> 5000 mg/kg bw (Rat)	> 5000 mg/kg bw (Rabbit)	29.8 mg/L (7093 ppm)	
80-62-6	OECD 401	OECD 402	(Rat) 4h (vapor)	
			OECD 403	
alpha-methyl styrene	4900 mg/kg (Rat) OECD	14560 mg/kg bw (Rabbit)	22.85 mg/L (Rat) 6h	
98-83-9	GHS	OECD GHS	Vapour 41600 mg/m³	
			(Rat) 8h	
			Vapour	
Quaternary	344 mg/kg bw (Rat) No	3340 mg/kg bw (Rabbit)	21500 mg/L (Rat) 1h No	
ammonium	guideline followed	No guideline followed	guideline followed	
compounds,				
benzyl-C12-16-				
alkyldimethy I,				
chlorides				
68424-85-1				
cobalt octoate 136-52-	3129 mg/kg/bw (Rat)	> 2000 mg/kg bw (Rat)		
7	OECD 425	OECD 402		

Skin corrosion/irritation

Chemical Name	Skin corrosion/irritation	Read-across (Analogy)
Styrene 100 - 42 - 5	Irritating to skin in vivo assay rabbit	
Methyl methacrylate 80-62-6	Irritating to skin rabbit Draize Test	
alpha-methyl styrene 98-83-9	Mild skin irritation rabbit Classification of corrosive hazards, Federal Register,	
cobalt octoate 136-52-7	Vol 37, No 57, § 173.240 No skin corrosion in vitro study OECD 431 EU Method B. 40	

Serious Eye Damage/Eye Irritation

Chemical Name	Serious Eye Damage/Eye Irritation	Read-across (Analogy)
Styrene 100-42-5	Irritating to eyes in vivo assay rabbit	
Methyl methacrylate 80-62-6	Mildeyeirritation rabbit Draize Test	

alpha-methyl styrene 98-83-9	Irritating to ey es rabbit	
	Moderate eye irritation OECD 437 EU Method B.47 Irritating to eyes rabbit OECD 405	

Respiratory or skin sensitisation

May produce an allergic reaction.

Chemical Name	Respiratory or skin sensitisation	Read-across (Analogy)
Styrene 100-42-5	Does not cause skin sensitization Does not cause	
	respiratory sensitization	
	CSR	
Methyl methacrylate 80-62-6	May cause sensitisation by skin contact mouse	
	OECD 429	
Propylidynetrimethanol 77-99-6	Does not cause skin sensitization in vivo assay	
	mouse	
	OECD 429	
alpha-methyl styrene 98-83-9	May cause sensitisation by skin contact mouse	
	OECD 429	
	EU Method B.42	
Quaternary ammonium	Does not cause skin sensitization in vivo assay	
compounds, benzyl-C12-16-	guinea pig	
alkyldimethyl, chlorides 68424-85-1	OECD 406	
cobalt octoate 136-52-7	May cause sensitisation by skin contact in vivo	
	assay	
	mouse	
	OECD 429	

Mutagenic Effects

in vitro study

Chemical Name	Ames test	Read-across (Analogy)
	Ambiguous In vitro gene mutation study in bacteria (S. typhimurium G46, TA1530, TA 1535, TA100, TA98, TA1538, TA 1537) OECD 471	
Methyl methacrylate 80-62-6	negative In vitro gene mutation study in bacteria OECD 471	

Propylidynetrimethanol 77-99-6	negative	
	In vitro gene mutation study in bacteria	
	(S. typhimurium TA 1535, TA 1537, TA 98 and TA 100)	
	(Escherichia coli WP2 uvrA)	
	OECD 471	
alpha-methyl styrene 98-83-9	negative	
	In vitro gene mutation study in bacteria	
	(S. typhimurium TA 1535, TA 1537, TA 98 and TA 100)	
	(Escherichia coli WP2 uvrA)	
	similar to OECD 471	
	OECD 472	
Quaternary ammonium	negative	
compounds, benzyl-C12-16-	In vitro gene mutation study in bacteria Salmonella	
alkyldimethyl, chlorides 68424-85-	sp.	
	OECD 471	
cobaltoctoate 136-52-7	negative	Cas N°: 68956-82-1, 14024-48-7
	In vitro gene mutation study in bacteria	
	(S. typhimurium TA 1535, TA 1537, TA 98, TA100 and TA	
	102)	
	OECD 471	

In vitro Mammalian Cell Gene Mutation Test	Read-across (Analogy)
Ambiguous	
In vitro gene mutation study in mammalian cells	
hamster	
OECD 476	
negative	
In vitro gene mutation study in mammalian cells	
hamster	
OECD 476	
negative	
In vitro gene mutation study in mammalian cells	
hamster	
similar to	
OECD 476	
	Ambiguous In vitro gene mutation study in mammalian cells hamster OECD 476 negative In vitro gene mutation study in mammalian cells hamster OECD 476 negative In vitro gene mutation study in mammalian cells hamster similar to

Revision date: 11-Aug-2023

1570456 Rev. 0

www.tricelcomposites.co.uk

cobalt octoate	negative	Cas N°: 7440-48-4, 1308-06-1,
136-52-7	In vitro gene mutation study in mammalian cells	10124-43-3, 12016-80-7
	mouse	
	OECD 476	
Chemical Name	In vitro Mammalian Chromosome Aberration Test	Read-across (Analogy)
Styrene	positive	
00-42-5	Chromosome aberration test in vitro	
	OECD 473	
	OECD 479	
Propylidynetrimethanol	negative	
77-99-6	Chromosome aberration test in vitro	
	hamster	
	OECD 473	
alpha-methyl styrene	negative	
98-83-9	Chromosome aberration test in vitro	
	hamster	
	similar to	
	OECD 473	
Quaternary ammonium compounds,	negative	
penzyl-C12-16-alkyldimethyl, chlorides	Chromosome aberration test in vitro	
88424-85-1	Human lymphocytes	
	OECD 473	
	0.00 470	

in vivo assay

Chemical Name	Unscheduled DNA Synthesis (UDS)	Read-across (Analogy)
Styrene 100-42-5	negative mouse OECD 486	
	OECD 474	
Methyl methacrylate 80-62-6	negative mouse OECD 478	
, ,		

alpha-methyl styrene 98-83-9	negative mouse similar to OECD 474	
		Cas N°: 68956-82-1, 14024-48-7,
	OECD 474 OECD 475	10026-24-1

Carcinogenicity

Carcinogenicity Styrene (100-42-5)					
Inhalation	OECD 453	rat	NOAEC systemic	negative	
			(carcinogenicity) >= 4.34		
			mg/L air (nominal)		
Inhalation	OECD 453	mouse	LOAEC (carcinogenicity)	positive	
			female/male = 0.09 - 0.18		
			mg/L air resp., NOAEC		
			(carcinogenicity) male =		
			0.09 mg/L air		
Oral	No information available	rat	NOAEL (carcinogenicity)	positive	
			>= 2000 mg/kg bw /day		
Oral	No information available	mouse	LOAEL (carcinogenicity)	positive	
			= 150 mg/kg bw /day		

Routes of Exposure	Method	Species	Dose	Evaluation
nhalation	OECD 451	mouse	NOAEC (carcinogenicity,	negative
			systemic toxicity) >= 4.1	
			mg/L air (male/female)	
			LOAEC (local toxicity) =	
			2.05 mg/L air	
			(male/female)	
Inhalation	OECD 451	rat	NOAEC (carcinogenicity)	negative
			>= 2.05 mg/L air (female))
			NOAEC (carcinogenicity)	
			>= 4.1 mg/L air (male)	
			NOAEC (systemic	
			toxicity)	
			>= 2.05 mg/L air	
			(male/female)	

			1.03 mg/L air (male/female)	
alpha-methyl styrene ((98-83-9)	<u> </u>		
Routes of Exposure	Method	Species	Dose	Evaluation
Inhalation	similar to OECD 451	mouse rat	LOAEC (male/female) 105 weeks = 100 ppm	negative
Reproductive toxi	icity			
Styrene (100-42-5)				
Routes of Exposure	Method	Species	Dose	Evaluation
Inhalation	No information available	rat	NOAEL/LOAEL (fertility) 60d = 100 - 200 mg/kg bw/day	positive
Oral	OECD 422	rat	NOAEL/LOAEL (fertility) 60d = 200 - 400 mg/kg bw/day	positive
Inhalation	OECD 416	rat	NOAEC (P, F1) = 0.64 mg/L air LOAEC (P, F1) = 2.13 mg/L air NOAEC (F2) = 0.21 mg/L air LOAEC (F2) = 0.64 mg/L air (70d)	negative
Methyl methacrylate (8	80-62-6)			
Routes of Exposure	Method	Species	Dose	Evaluation
		1		l .

Oral	OECD 416	rat	NOAEL (general,	negative
Ji di	0100 410		systemic toxicity) = 50	negative
			mg/kg bw/day	
			(male/female) NOAEL	
			(fertility and	
			reproductive	
			performance)	
			= 400 mg/kg bw/day	
			(male/female)	
			NOAEL (developmental	
			toxicity) = 400 mg/kg	
			bw/day (male/female)	
Propylidynetrimethand	ol (77-99-6)			
Routes of Exposure	Method	Species	Dose	Evaluation
Oral	OECD 443	rat	NOAEL (general toxicity)	positive
			= 740 ppm	
			NOAEL (reproductive	
			toxicity) = 2200 ppm	
 Oral	OECD 421	rat	NOAEL (parental,	negative
ordi	OLCD 421	lat	reproduction &	negative
			developmental toxicity) > 6000 ppm	
alpha-methyl styrene	(98-83-9)			
Routes of Exposure	Method	Species	Dose	Evaluation
	Method OECD 422	Species rat	Dose NOEL (parental females)	
			NOEL (parental females)	
			NOEL (parental females) = 200 mg/kg bw/day	
			NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) =	
Dral	OECD 422	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day	negative
Oral			NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day NOAEC (systemic	
Dral	OECD 422	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day NOAEC (systemic toxicity) male/female =	negative
Oral	OECD 422	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day NOAEC (systemic toxicity) male/female = 0.21 mg/L NOAEC	negative
Provided in the second	OECD 422	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day NOAEC (systemic toxicity) male/female = 0.21 mg/L NOAEC (reproductive toxicity)	negative
Oral	OECD 422	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day NOAEC (systemic toxicity) male/female = 0.21 mg/L NOAEC	negative
Oral	OECD 422 similar to OECD 416	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day NOAEC (systemic toxicity) male/female = 0.21 mg/L NOAEC (reproductive toxicity)	negative
nhalation cobalt octoate (136-52	OECD 422 similar to OECD 416	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day NOAEC (systemic toxicity) male/female = 0.21 mg/L NOAEC (reproductive toxicity) male/female = 2.1 mg/L	negative
Oral	OECD 422 similar to OECD 416	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day NOAEC (systemic toxicity) male/female = 0.21 mg/L NOAEC (reproductive toxicity) male/female = 2.1 mg/L Dose	negative
onal nhalation cobalt octoate (136-52) Routes of Exposure	oecd 422 similar to Oecd 416 -7) Method	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day NOAEC (systemic toxicity) male/female = 0.21 mg/L NOAEC (reproductive toxicity) male/female = 2.1 mg/L Dose	negative negative Evaluation

Revision date: 11-Aug-2023 1570456 Rev. 0

Developmental Toxicity

Suspected of damaging the unborn child

Developmental Toxicity	,			
Styrene (100-42-5)				
Routes of Exposure	Method	Species	Dose	Evaluation
Inhalation	No information available	rat	NOAEC/LOAEC (materna	positive
			toxicity +	
			developemental	
			toxicity) >50d = 1.08 -	
			2.15	
			mg/L air	
nhalation	OECD 414	rat	LOAEC (maternal	positive
			toxicity)	
			6-15d = 1.28 mg/L air	
nhalation	OECD 414	rat	NOAEC (developmental	negative
			toxicity) 6-15d >= 2.56	
			mg/L air	
nhalation	OECD 414	rabbit	NOAEC (maternal	negative
			toxicity	
			+ developmental	
			toxicity) 6-18d = 2.56	
			mg/L air	

Methyl methacrylate (8	30-62-6)			
Routes of Exposure	Method	Species	Dose	Evaluation
nhalation	OECD 414	rat	LOEC (maternal toxicity)	negative
			=	
			0.41 mg/L air	
			NOAEC (fetotoxicity) >=	
			8.3 mg/L air	
			NOAEC (teratogenicity)	
			>= 8.3 mg/L air	
Oral	OECD 414	rabbit	NOAEL (maternal	negative
			toxicity)	
			= 50 mg/kg bw/day	
			NOAEL (developmental	
			toxicity) = 450 mg/kg	
			bw/day	

Propylidynetrimethanol (77-99-6)

Routes of Exposure	Method	Species	Dose	Evaluation
	OECD 414 EU Method B.31 EPA OPPTS 870.3700		NOAEL (maternal & developmental toxicity) >= 450 mg/kg bw/day	negative

Routes of Exposure	Method	Species	Dose	Evaluation
nhalation	similar to OECD 414	rat rabbit	LOAEC (maternal	positive
	Read-across (Analogy)		toxicity)	
	Cas N°: 100-42-5		= 297 ppm	
			NOAEC (developmental	
			toxicity) = 600 ppm	
			LOAEL (maternal	
			toxicity)	
			=180 mg/kg bw/day	
			NOAEL (developmental	
			toxicity) = 300 mg/kg	
			bw/day	
			NOAEC (maternal	
			toxicity)	
			= 600 ppm	

Specific target organ toxicity - single exposure:

May cause irritation of respiratory tract

STOT - single exposure				
alpha-methyl styrene (98-	-83-9)			
Routes of Exposure	Method	Species	Dose	Remarks
Inhalation	No information available		C >= 600 ppm	

Specific target organ toxicity - repeated exposure:

Causes damage to organs through prolonged or repeated exposure, target organ(s): Central nervous system, Ears

STOT - repeated exposure		
Styrene (100-42-5)		

Routes of Exposure	Method	Species	Dose	Remarks
Inhalation	OECD 412	rat mouse	NOAEC male (28d) = 3.47	
			mg/L air	
			NOAEC (ototoxicity) 28d	
			=	
			2.13 mg/L air	
			NOAEC (28d) = 0.181	
			mg/L air	
			NOAEC (28d) = 0.688	
			mg/L air	
Inhalation	No information available	rat	NOAEC (nasal tract) =	
			0.85 mg/L air	
			NOAEC (overall) = 2.13	
			mg/L air	
			NOAEC (ototoxicity) =	
			0.85 mg/L air	
			LOAEC (ototoxicity) =	
			3.41 mg/L air	
			NOAEC (overall) = 2.13	
			mg/L air	
Oral	No information available	rat	NOAEL (toxicity) = 1000	
			mg/kg bw/day	
			LOAEL (toxicity) = 2000	
			mg/kg bw/day	
Oral	No information available	mouse	NOAEL (toxicity) = 150	
			mg/kg bw /day	
			LOAEL (toxicity) = 300	
			mg/kg bw /day	
Inhalation	OECD 453	rat	LOAEC local (toxicity) =	
			0.21 mg/L air	

Methyl methacrylate (80	0-62-6)			
Routes of Exposure	Method	Species	Dose	Remarks
Oral	OECD 453	rat	NOAEL (male/femal 2000 ppm NOAEL (male) >= 124	

	cobalt dichloride hexahydrate OECD 408		bw/day	
Oral	Read-across (Analogy)	rat	NOAEL (90d) = 3 mg/kg	
Routes of Exposure	Method	Species	Dose	Remarks
cobalt octoate (136-52-	-7)			
			weeks = 300 ppm	
Inhalation	similar to OECD 413	rat	NOAEC (male/female) 14	
Routes of Exposure	Method	Species	Dose	Remarks
alpha-methyl styrene ((98-83-9)			
Inhalation	OECD 453	rat	NOAEC (90d) = 1000 ppm	
			>=164 mg/kg bw/day	
			mg/kg bw/day NOAEL	

Aspiration hazard Due to the viscosity, this product does not present an

aspiration hazard.

11.2. Information on Other Hazards

Endocrine disrupting properties No information available

Other information None

12. Ecological Information

12.1. Toxicity

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do not flush into surface water or sanitary sewer system

Acute aquatic toxicity - Component Information

Chemical Name	Toxicity to algae	Toxicity to daphnia and	Toxicity to fish	Toxicity to
	, 0	other aquatic	,	, microorganisms
		invertebrates.		J
Styrene 100-42-5	EC50 (72h) = 4.9 mg/L	EC50 (48h) = 4.7 mg/L	LC50 (96h) = 4.02 - 10	EC (30min) = 500 mg/L
Styrene 100 42 0	(Pseudokirchnerella	(Daphnia magna)	mg/L (Pimephales	(Activated sludge of a
	subcapitata)	NOEC = 1.9 mg/L (Daphnia		predominantly domestic
	EPA OTS 797.1050	magna)	promeids) OLOD 200	sewage)
	EFA 013 797.1030	OECD 202		OECD 209
		OECD 202		OECD 209
Methyl methacrylate	EC50 (72h) > 110 mg/L	EC50 (48h) = 69 mg/L	LC50 (96h) = 79 mg/L	EC3 (16h) = 100 mg/L
80-62-6	(Selenastrum	(Daphnia magna) OECD	(Oncorhynchus mykiss)	(Pseudomonas putida)
	capricornutum) OECD 201	202	OECD 203	inhibition test,
				Bringmann-Kühn
alpha-methyl styrene	EC50 (72h) = 11.441 mg/L	EC50 (48h) = 1.645 mg/L	LC50 (96h) = 2.97 mg/L	EC10 (3h) = 661.5 mg/L
98-83-9	(Desmodesmus	(Daphnia magna)	(Danio rerio)	(Activated sludge of a
00 00 0	subspicatus)	-	NOEC (96h) = 2.13 mg/L	predominantly domestic
	NOEC (72h) = 2.26 mg/L	(Daphnia magna)	(Danio rerio)	sewage)
	(Desmodesmus	NOEC (48h) = 0.64 mg/L	LOEC (96h) = 3.19 mg/L	EC50 (3h) > 2 000 mg/L
	subspicatus)	(Daphnia magna)	(Danio rerio)	(Activated sludge of a
	LOEC (72h) = 8.3 mg/L	LOEC (48h) = 1.21 mg/L	OECD 203, EU Method C.1	predominantly domestic
	(Desmodesmus	(Daphnia magna) OECD	OLCD 203, LO METHOD C.I	sewage)
	subspicatus)	202, EU Method C.2		OECD 209, EU Method C.11
	OECD 201, EU Method C.3	5050 (401) 0 010 //	1 050 (001) 0 00 /r	5050 775 /
Quaternary	ErC50 (72h) = 0.049 mg/L	EC50 (48h) = 0.016 mg/L	LC50 (96h) = 0.28 mg/L	EC50 = 7.75 mg/L
ammonium	(Pseudokirchneriella	(Daphnia magna) OECD	(Pimephales promelas)	(Activated sludge) OECD
compounds,	subcapitata) OECD 201	202	US-EPA	209
benzyl-C12-16-				
alkyldimethy I,				
chlorides				
68424-85-1				
cobalt octoate	EC50 (72h) = 144 μg		LC50 (96h) = 1.512 mg/L	EC10 (30 min) = 3.73 mg/L
136-52-7	Codiss./L		(Oncorhynchus mykiss)	(Activated sludge)
	(Pseudokirchneriella		NOEC (96h) = 0.939 mg/L	EC50 (30 min) = 120 mg/L
	,			
	subcapitata)		(Oncorhynchus mykiss)	(Activated sludge)

Revision date: 11-Aug-2023

1570456 Rev. 0

Page **31** of **42** www.tricelcomposites.co.uk

NOEC (72h) = 32.2 μg./L	LOEC (96h) = 1.577 mg/L	Read across with Cas N°:
	, ,	
(Pseudokirchneriella	(Oncorhynchus mykiss)	7646-79-9
subcapitata)	ASTM guideline (1996)	OECD 209
LOEC (72h) = 52.7 µg		
() pg		
Codiss./L		
(Pseudokirchneriella		
subcapitata)		
, , , , ,		
OECD 201		
	(Pseudokirchneriella subcapitata) LOEC (72h) = 52.7 µg Codiss./L	(Pseudokirchneriella (Oncorhynchus mykiss) subcapitata) ASTM guideline (1996) LOEC (72h) = 52.7 µg Codiss./L (Pseudokirchneriella

Chronic aquatic toxicity - Component Information

Chemical Name	Toxicity to algae	Toxicity to daphnia and	Toxicity to fish	Toxicity to
		other aquatic		microorganisms
		invertebrates.		
Styrene 100-42-5		NOEC (21d) = 1.01 mg/L		
		(Daphnia magna)		
		LOEC (21d) = 2.06 mg/L		
		(Daphnia magna)		
		EC50 (21d) = 1.88 mg/L		
		(Daphnia magna) OECD		
		203		
Methyl methacrylate	NOEC (72h) = 49 mg/L	NOEC (21d) = 37 mg/L	NOEC (35d) = 9.4 mg/L,	NOEC (28d) > 1000 mg/kg
80-62-6	(Selenastrum	(Daphnia magna) OECD	LOEC (35d) = 18.8 mg/L	soil dw
	capricornutum) OECD 201	211	(Danio rerio)	OECD Chemicals Testing
			OECD 210	Program UPEC/3

alpha-methyl styrene		NOEC (21d) = 0.401 mg/L	
98-83-9		(Daphnia magna)	
		LC50 (21d) = 1.56 mg/L	
		(Daphnia magna)	
		EC50 (21d) = 1.11 mg/L	
		(Daphnia magna) OECD	
		211	
cobalt octoate 136-52-	EC50 (7d) = 90.1 µg./L	NOECR (21d) = 60.8 μg./L	
7	(Lemna minor)	(Daphnia magna)	
	NOEC (7d) = 3.0 μg/L	LC50 (21d) = 121.3 mg/L	
	(Lemna minor)	(Daphnia magna) LOECR	
	LOEC (7d) = 8.8 µg/L	(21d) = 93.3 µg	
	(Lemna minor) OECD 221	Codiss./L (Daphnia	
		magna)	
		OECD 211	

Effects on terrestrial organisms - Component Information

Acutetoxicity				
Quaternary ammonit	ım compounds, benzyl-C	12-16-alkyldimethyl, cl	nlorides (68424-85-1)	
Acute toxicity	Test Method	Species	Values	Remarks
Other plants	OECD 208	No information o	bw (14d)	00 mg/kg

Chronic toxicity					
Styrene (100-42-5)					
Chronic toxicity	Method	Species	Values	Remarks	
Toxicity to invertebrates	OECD 207	Eisenia foetida	LC50 (14d) = 120 mg/kg		
			soil dw		
			LOEC (burrowing time		
			and mean percent		
			weight change) = 65		
			mg/kg soil dw		
			LOEC (survival) = 180		
			mg/kg soil dw		
			NOEC (mean percent		
			weight change) = 34		
			mg/kg soil dw		

Quaternary ammonium compounds, benzyl-C12-16-alkyldimethyl, chlorides (68424-85-1)

Chronic toxicity	Method	Species	Values	Remarks
Toxicity to soil dwelling organisms.	OECD 216		EC50 > 1000 mg/kg bw (28d)	
	OECD 207	Eisenia foetida	LC50 = 7070 mg/kg bw (14d)	

12.2. Persistence and degradability

Chemical Name	Degradation	Evaluation
Propylidynetrimethanol 77-99-6	DT50 > 1 year (25°C)	Stable
, ,	Stable (pH = 4, 7, 9) 25°C OECD 111	Stable

Chemical Name	Biodegradation	Evaluation
Styrene 100-42-5	87% (20d) similar to OECD 301D	Readily biodegradable
Methyl methacrylate 80-62-6	94.3 % (14d) OECD 301 C	Readily biodegradable
Propylidynetrimethanol 77-99-6	6% (28d) Similar to OECD 301 E	Not readily biodegradable
alpha-methyl styrene 98-83-9	21% (28d) OECD 301F, EU Method C.4-D 56% (28d) OECD 301D, EU Method C.4-E	Not readily biodegradable
Quaternary ammonium compounds, benzyl-C12-16- alkyldimethyl, chlorides 68424-85-1	95.5% (28d) OECD 301B	Readily biodegradable
cobalt octoate 136-52-7	60% (> 10d), OECD 301 B	Readily biodegradable

12.3. Bioaccumulative potential

Bioconcentration factor (BCF)		
Styrene (100-42-5)		
Method	Species	Bioconcentration factor (BCF)
Calculation method		74

Methyl methacrylate (80-62-6)

Method	Species		Bioconcentration factor (BCF)
Calculation method QSAR			2.97
Propylidynetrimethanol (77-99-6)	'		-
Method	Species		Bioconcentration factor (BCF)
OECD 305 C	Cyprinus carpio		BCF < 17
alpha-methyl styrene (98-83-9)	<u> </u>		
Method	Species		Bioconcentration factor (BCF)
OECD 305 C	Cyprinus carp	io	BCF (56d) = 15 - 140 (25°C) C = 0.3 mg/L BCF (56d) = 12 - 113 (25°C) C = 0.03 mg/L
Chemical Name		log Pow	
Styrene 100-42-5		3	
Methyl methacrylate 80-62-6		1.38	
metnyi metnacrylate 80-62-6			
Propylidynetrimethanol 77-99-6		-0.47	

12.4. Mobility in soil

Chemical Name	LogKoc	Koc
Styrene100-42-5	2.55	352
Methyl methacrylate 80-62-6	0.94 - 1.86	-
alpha-methyl styrene 98-83-9	2.84	892

12.5. Results of PBT and vPvB

Chemical Name	РВТ	vPvB

Styrene 100-42-5	This substance is not considered to be	This substance is not considered to be
	persistent, bioaccumulating nor toxic	very persistent nor very
	(РВТ).	bioaccumulating (vPvB).
Methyl methacrylate 80-62-6	This substance is not considered to be	This substance is not considered to be
	persistent, bioaccumulating nor toxic	very persistent nor very
	(PBT).	bioaccumulating (vPvB).
Propylidynetrimethanol 77-99-6	This substance is not considered to be	This substance is not considered to be
	persistent, bioaccumulating nor toxic	very persistent nor very
	(PBT).	bioaccumulating (vPvB).
alpha-methyl styrene 98-83-9	This substance is not considered to be	This substance is not considered to be
	persistent, bioaccumulating nor toxic	very persistent nor very
	(РВТ).	bioaccumulating (vPvB).

12.6. Endocrine disrupting properties

Endocrine disrupting properties No information available

12.7. Other Adverse Effects

None known.

13. Disposal Considerations

13.1. Waste Treatment Methods

Waste from Residues/Unused Products

- Dispose of in accordance with the European Directives on waste and hazardous waste.
- Do not flush into surface water or sanitary sewer system

Contaminated packaging

 Empty containers should be taken to an approved waste handling site for recycling or disposal.

Other information

- According to the European Waste Catalogue, Waste Codes are not product specific, but application specific.
- Waste codes should be assigned by the user based on the application for which the product was used.

14. Transport Information

14.1. UN number or ID number

ADR/RID UN1866
IMDG/IMO UN1866
ICAO/IATA UN1866
ADN UN1866

14.2. UN proper shipping name

ADR/RID

Resin solution

UN1866, RESIN SOLUTION, 3, PG III, (D/E)

IMDG/IMO

Resin solution

UN1866, RESIN SOLUTION, 3, PG III, (31°C c.c.)

ICAO/IATA

UN1866, RESIN SOLUTION, 3, PG III

ADN

Resin solution

UN1866, RESIN SOLUTION, 3, PG III

14.3. Transport hazard class(es)

ADR/RID

Hazard class 3

IMDG/IMO

Hazard class 3

ICAO/IATA

Hazard class 3

AND

Hazard class 3

14.4. Packing group

ADR/RID III

IMDG/IMO III

ICAO/IATA III

ADN III

14.5. Environmental hazards

ADR/RID No

IMDG/IMO No

Marine pollutant No

ICAO/IATA No

ADN No

14.6. Special precautions for user

ADR/RID

Classification Code F1

Tunnel restriction code (D/E)

Limited quantity 5 L

IMDG/IMO

EmS F-E, S-E

Limited quantity 5 L

ICAO/IATA

ERG Code 3L

Limited quantity 10 L

ADN

Classification Code F1

Limited quantity 5 L

ventilation VE01

Special precautions for users

Special precautions

No information available

14.7. Maritime transport in bulk according to IMO instruments

Transport in bulk according to Annex II of MARPOL and the IBC Code not applicable

15. Regulatory Information

15.1. Safety, Health And Environmental Regulations / Legislation Specific For The Substance Or Mixture

Regulation (EC) No. 1907/2006 (REACH)

Regulation (EC) No. 1272/2008 (CLP)

Regulation (EU) No. 2020/878

Directive 88/642/EEC

Directive 98/24/EC

Directive 1999/92/EC

Directive 2012/18/EU

The mixture is subject to restrictions on use, see Annex XVII of the Regulation 1907/2006/EC (REACH): Column1, n°3; Column 1, n° 40.

European Union

National regulatory information

The United Kingdom

Avoid exceeding of the given occupational exposure limits (see section 8).

Ireland

Avoid exceeding of the given occupational exposure limits (see section 8).

15.2. Chemical Safety Assessment

Chemical Safety Assessment Yes

Exposure scenario Relevant information for risk control are

communicated in the form of exposure

scenario attached to the safety data sheet.

16. Other Information

Full text of H-Statements referred to under sections 2 and 3

H225 - Highly flammable liquid and vapour

H226 - Flammable liquid and vapour

H302 - Harmful if swallowed

H304 - May be fatal if swallowed and enters airways

H314 - Causes severe skin burns and eye damage

H315 - Causes skin irritation

H317 - May cause an allergic skin reaction

H318 - Causes serious eye damage

H319 - Causes serious eye irritation

H332 - Harmful if inhaled

H335 - May cause respiratory irritation

H360Fd - May damage fertility. Suspected of damaging the unborn child

H361d - Suspected of damaging the unborn child

H361fd - Suspected of damaging fertility. Suspected of damaging the unborn child

H372 - Causes damage to organs through prolonged or repeated exposure if inhaled

H400 - Very toxic to aquatic life

H410 - Very toxic to aquatic life with long lasting effects

H411 - Toxic to aquatic life with long lasting effects

H412 - Harmful to aquatic life with long lasting effects

EUH208 - May produce an allergic reaction

Training Advice Handle in accordance with good industrial hygiene and

safety practice. To avoid risks toman and the environment,

comply with the instructions for use.

Sources of key data used to

compile the datasheet ECHA

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

Revision date: 11-Aug-2023 1570456 Rev. 0

End of Safety Data Sheet

Revision date: 11-Aug-2023 1570456 Rev. 0

www.tricelcomposites.co.uk