

POLYESTER RESIN 11C762O

Product Name:	Polyester Resin 11C762O
	1133843 Rev.1
Revision Date:	28-July-2023
	According to Regulation (EC) No. 1907/2006

Identification of the substance/mixture and of the company/undertaking

1.1. Product Identifier

Product Name: Polyester Resin 11C762O

Chemical Name: Polyester Resin

Pure Substance/Mixture: Mixture

1.2. Product relevant identified uses of the substance or mixture and uses advised against

Casting Resin

1.3. Details of the supplier of the safety data sheet

Tricel Composites (GB) Limited Tricel Composites (NI) Limited

Unit A, Foxway, Unit 4, Milltown Ind. Estate, Greenan

Off Atkinson Street, Road. Warrenpoint, Newry

Leeds, West Yorkshire, Co. Down,

LS10 1PS. BT34 3FN.

Tel: +44 (0)113 270 3133 Tel: +44 (0)284 175 3738

1.4. Emergency Telephone Number

Emergency medical information: 8am-10pm (seven days) contact National Poisons

Information Centre, Beaumont Hospital, Dublin 9 DOV2NO, Ireland.

Telephone Number: +353 (0)1 809 2166

Leeds:	Newry:
Tel: +44 (0)113 270 3133	Tel: +44 (0)284 175 3738

1.4.1. Poison Information Centre Telephone Number

European emergency phone number: 112

UK: National Poisons Emergency Number: 0344 892 0111

Ireland: National Poisons Information Centre (NPIC) Telephone Healthcare

Professionals: +353 (01) 809 2566. (24 hour service) Telephone Members of

Public: +353 (01) 809 2166. (8.00 a.m. to 10.00 p.m. 7 days a week)

2. Hazards Identification

2.1. Classification of the substance or mixture

Classification of the substance or mixture - GHS/CLP (nº 1272/2008)

Skin Corrosion/Irritation	Category 2 - (H315)
Serious Eye Damage/Eye Irritation	Category 2 - (H319)
Reproductive Toxicity	Category 2 - (H361d)
Specific Target Organ Toxicity (Single Exposure)	Category 3 - (H335)
Specific target organ toxicity - repeated exposure	Category 1 - (H372)
Chronic Aquatic Toxicity	Category 3 - (H412)
Flammable liquids	Category 3 - (H226)

2.2. Label elements

Signal Word: Danger

Contains: Styrene

2.2.1. Hazard Statements

H315 - Causes skin irritation

H319 - Causes serious eye irritation

H335 - May cause respiratory irritation

H361d - Suspected of damaging the unborn child

H372 - Causes damage to organs through prolonged or repeated exposure if

inhaled

H412 - Harmful to aquatic life with long lasting effects

Revision date: 28-July-2023 1133843 Rev.1 www.tricelcomposites.co.uk

2.2.2. Physical Hazards

H226 - Flammable liquid and vapour

2.2.3. Additional EU H-Phrases

EUH208 - Contains alpha-methyl styrene, cobalt octoate. May produce an allergic reaction.

2.2.4. Precautionary Statements

P210 - Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking

P243 - Take action to prevent static discharges

P260 - Do not breathe vapour

P273 - Avoid release to the environment

P280 - Wear protective gloves/protective clothing/eye protection/face protection

P302 + P352 - IF ON SKIN: Wash with plenty of soap and water

P304 + P340 - IF INHALED: Remove person to fresh air and keep comfortable for breathing

P305 + P351 + P338 - IF IN EYES: Rinse cautiously with water for several minutes.

Remove contact lenses, if present and easy to do. Continue rinsing

P403 + P233 - Store in a well-ventilated place. Keep container tightly closed

2.3. Other Hazards

PBT/vPvB see section 12.5

Revision date: 28-July-2023 1133843 Rev.1 www.tricelcomposites.co.uk

3. Composition/Information on Ingredients

3.1. Hazardous components

Chemical Name	EC-No	REACH	CAS-No	Weight	GHS Classification	M-Factor	M-Factor	Concen-
		Registration		percent		(acute)	(chronic	tration limit
		Number)	(%)
Styrene	202-851-5	01-	100-42-5	25 - 35	Flam. Liq. 3 (H226)			
,		2119457861-			Repr. 2 (H361d) Acute			
		32			Tox. 4 (H332) Skin Irrit.			
					2 (H315) Eye Irrit. 2			
					(H319) Asp. Tox. 1			
					(H304) STOT SE 3			
					(H335) STOT RE 1			
					(H372)			
					Aquatic Chronic 3			
					(H412)			
Mothyd	201-297-1	01-	80-62-6	1 - 10	Flam. Liq. 2 (H225)			
Methyl	201-297-1		80-62-6	1 - 10	-			
methacrylate		2119452498-			STOT SE 3 (H335)			
		28			Skin Irrit. 2 (H315) Skin			
					Sens. 1 (H317)			
Propylidynetrim	201-074-9	01-	77-99-6	0.1 - < 1	Repr. 2 (H361fd)			
ethan		2119486799-						
ol		10						
alpha-methyl	202-705-0	01-	98-83-9	0.1 - < 1	Flam. Liq. 3 (H226)			
styrene		2119472426-			Asp. Tox. 1 (H304)			
		35			Skin Sens. 1B (H317)			
					Eye Irrit. 2 (H319) STOT			
					SE 3 (H335)			
					Repr. 2 (H361d)			
					Aquatic Chronic 2			
					(H411)			
Quaternary	270-325-2	01-	68424-85-1	0.1 - < 1	Acute Tox. 4 (H302)	10	1	
ammonium		2119983287-			Skin Corr. 1B (H314)			
compounds,		23			Eye Dam. 1 (H318)			
					Aquatic Acute 1			
					(H400)			

Revision date: 28-July-2023

1133843 Rev.1

Page **5** of **43**

benzyl-C12-16-					Aquatic Chronic 1		
alkyldi methyl,					(H410)		
chlorides							
cobalt octoate	205-250-6	01-	136-52-7	0.01 - < 0.1	Skin Sens. 1A (H317)	1	
		2119524678-			Eye Irrit. 2 (H319) Repr.		
		29			IB (H360Fd)		
					Aquatic Acute 1		
					(H400)		
					Aquatic Chronic 3		
					(H412)		

3.1.1. Additional information

Acute Toxicity Estimate See Section 11 for more information. For the full text of the H-Statements mentioned in this Section, see Section 16.

4. First Aid Measures

4.1. Other Hazards

General advice

 Show this safety data sheet to the doctor in attendance Do not breathe dust/fume/gas/mist/vapours/spray

Eye Contact

- Rinse thoroughly with plenty of water, also under the eyelids.
- Keep eye wide open while rinsing. If symptoms persist, call a physician

Skin contact

• Wash off immediately with soap and plenty of water removing all contaminated clothes and shoes. If skin irritation persists, call a physician

Inhalation

 Move to fresh air. If not breathing, give artificial respiration. Consult a physician

Ingestion

• Do NOT induce vomiting Rinse mouth. Consult a physician.

Protection of first-aiders

- · Use personal protective equipment
- See section 8 for more information

4.2. Most important symptoms and effects, both acute and delayed

Eye Contact: Irritating to eyes

Skin contact: Irritating to skin. May produce an allergic reaction.

Inhalation: Harmful: danger of serious damage to health by prolonged

exposure through inhalation Irritating to respiratory system. May

produce an allergic reaction.

Ingestion: Ingestion may cause gastrointestinal irritation, nausea, vomiting

and diarrhoea.

4.3. Most important symptoms and effects, both acute and delayed

Notes to physician No information available

5. Firefighting Measures

5.1. Extinguishing media

Suitable extinguishing media: Dry chemical, Foam, Carbon dioxide (CO 2), (closed

systems)

Extinguishing Media Which Must not be Used for Safety Reasons

5.2. Special Hazards arising from substance or mixture

Special exposure hazards arising from the substance or preparation itself, combustion products, resulting gases

5.3. Advice for Firefighters

Vapours may form explosive mixtures with air. Most vapours are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks) Heating or fire can release toxic gas: Carbon monoxide Special protective equipment for fire-fighters: Wear self-contained breathing apparatus and protective suit.

5.4. Other information

- Cool containers / tanks with water spray.
- Fire residues and contaminated fire extinguishing water must be disposed of in accordance with local regulations.

6. Accidental Release Measures

6.1. Personal precautions, protective equipment and emergency procedures

- 6.1.1. For non-emergency personnel
 - Personal precautions:
 - Remove all sources of ignition
 - Heat, flames and sparks.
 - Take precautionary measures against static charges.
 - Ensure adequate ventilation
 - Use personal protective equipment

6.1.2. For emergency responders

 Avoid breathing vapours or mists In the event of fire and/or explosion do not breathe fumes. Use personal protective equipment

6.2. Environmental Precautions

The product should not be allowed to enter drains, water courses or the soil. Do not flush into surface water or sanitary sewer system.

6.3. Methods and Material for Containment and Cleaning Up

Contain spillage, and then collect with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations (see section 13). Use clean non-sparking tools to collect absorbed material

6.4. Reference to other sections

- See section 8 for more information
- See Section 12 for additional Ecological Information

7. Handling and Storage

7.1. Precautions for safe handling

7.1.1. Precautions for safe handling

Avoid static electricity build up with connection to earth.

Use only in area provided with appropriate exhaust ventilation.

In case of insufficient ventilation, wear suitable respiratory equipment.

For personal protection see section 8.

7.1.2. Prevention of fire and explosion

Keep away from open flames, hot surfaces and sources of ignition Empty containers may contain flammable or explosive vapours.

Revision date: 28-July-2023 1133843 Rev.1 www.tricelcomposites.co.uk

7.1.3. Hygiene measures

When using, do not eat, drink or smoke Wash hands before breaks and at the end of workday. Provide regular cleaning of equipment, work area and clothing.

7.2. Conditions for safe storage, including any incompatibilities

Technical measures/Storage

- Keep in a dry, cool and well-ventilated place.
- Keep at temperature not exceeding 30°C
- Keep away from heat and sources of ignition.

Materials to avoid: Strong oxidizing agents, Peroxides, Reducing agents

Packaging material: Metallic GRP Tanks (Reinforced Glass Polyester)

Unsuitable materials for containers: Copper alloys, Bronze, Zinc

8. Exposure Controls/Personal Protection

8.1. Control Parameters

8.1.1. Occupational Exposure limits

Chemical Name	European	ACGIH OEL (Ceiling)	The United Kingdom	Ireland
	Union			
Styrene 100-42-5	-	ACGIH (2020):	STEL 250 ppm STEL	TWA 20 ppm
		TLV-TWA: 10 ppm	1080 mg/m3	TWA 85
		TLV-STEL/C: 20 ppm Notes:	TWA 100 ppm TWA	mg/m3
		OTO, A3, BEI	430	STEL 40 ppm
		Critical effects: CNS and	mg/m3	STEL 170
		hearing impairment, URT irr,		mg/m3
		peripheral neuropathy		
		visual disorders		
Methyl methacrylate		TWA 50 ppm, STEL 100	STEL 100 ppm STEL	TWA 50 ppm
80-62-6		ppm (2007)	416	STEL 100
				ppm

Revision date: 28-July-2023 1133843 Rev.1 www.tricelcomposites.co.uk

			mg/m3 TWA 50 ppm TWA 208 mg/m3	
alpha-methyl styrene	TWA 50 ppm	TWA 50 ppm	STEL 100 ppm STEL	TWA 50 ppm
98-83-9	TWA 246		491	TWA 246
	mg/m3 STEL		mg/m3 TWA 50	mg/m3 STEL
	100 ppm STEL		ppm TWA 246	100 ppm STEL
	492 mg/m3		mg/m3	490 mg/m3
cobalt octoate		0.02 mg/m³	³ STEL 0.3 mg/m3	TWA 0.1
136-52-7			TWA 0.1	mg/m3
			mg/m3 Sen+	Sensitizer

Special hazards arising from the substance or mixture

8.1.2. Biological standards Derived No Effect Level (DNEL)

Derived No Effect Level (DNEL)				
Styrene (100-42-5)				
Туре	DNEL oral	DNEL dermal	DNEL inhalation	Remark
Workers - Long Term -		406 mg/Kg bw/day	85 mg/m³	
Systemic effect				
Workers - Acute Short			306 mg/m ³	
Term - Local effect				
Workers - Acute Short term			289 mg/m ³	
- Systemic effect				
General Population - Acute			182.7 mg/m³	
Short Term - Local effect				
General Population - Acute			174.2 mg/m ³	
Short Term - Systemic				
effect				
General Population - Long	2.1 mg/Kg	343 mg/Kg bw/day	10.2 mg/m ³	
Term - Systemic effect	bw/day			
Methyl methacrylate (80-62-6)				
Туре	DNEL oral	DNEL dermal	DNEL inhalation	Remark

Workers - Long Term -		13.67 mg/kg bw/day	208 mg/m³	
		13.67 Hig/kg bw/ddy	2081119/111	
Systemic effect		1.5 / 2	000 / 3	
Workers - Long Term -		1.5 mg/cm²	208 mg/m³	
Local effect				
Workers - Acute Short		1.5 mg/cm²		
Term - Local effect			,	
General Population - Long		8.2 mg/kg bw/day	74.3 mg/m³	
Term - Systemic effect				
General Population - Long		1.5 mg/cm²	104 mg/m³	
Term - Local effect				
Propylidynetrimethanol (7	7-99-6)			
Туре	DNEL oral	DNEL dermal	DNEL inhalation	Remark
Workers - Long Term -		0.94 mg/kg bw/day	3.3 mg/m³	
Systemic effect				
General Population - Long	0.34	0.34 mg/kg bw/day	0.58 mg/m³	
Term - Systemic effect	mg/kg			
	bw/day			
alpha-methyl styrene (98-	-83-9)	1		
Туре	DNEL oral	DNEL dermal	DNEL inhalation	Remark
Workers - Long Term -		2.8 mg/kg bw/day	246 mg/m3	
Systemic effect				
Workers - Acute Short			492 mg/m3	
Term - Local effect				
Workers - Long Term -		0.105 mg/cm²		
Local effect				
General Population -	0.1 mg/kg	1.4 mg/kg bw/day	4.83 mg/m³	
Long Term - Systemic	bw/day			
effect	,			
General Population -		0.052 mg/cm ²		
Long Term - Local effect				
cobalt octoate (136-52-7)		1		
Туре	DNEL oral	DNEL dermal	DNEL inhalation	Remark
Workers - Long Term -			235.1 µg/m3	
Local effect				

General Population -	175 µg/kg		
Long Term - Systemic	bw/day		
effect			
General Population -		37 µg/m3	
Long Term - Local effect			

8.1.3. Predicted No Effect Concentration (PNEC)

PNEC Component		
Styrene (100-42-5)		
Exposure	Туре	PNEC
Fresh water	PNEC Aqua	0.028 mg/L
Marine water	PNEC Aqua	0.014 mg/L
Intermittent use/release	PNEC Aqua	0.04 mg/L
Fresh water	PNEC Sediment	0.614 mg/Kg.dw
Marine water	PNEC Sediment	0.307 mg/Kg.dw
Terrestrial Compartment	PNEC Soil	0.2 mg/Kg.dw
STP microorganisms	PNEC STP	5 mg/L
Methyl methacrylate (80-62-6)		
Exposure	Туре	PNEC
Fresh water	PNEC Aqua	0.94 mg/L
Marine water	PNEC Aqua	0.94 mg/L
Intermittent use/release	PNEC Aqua	0.94 mg/L
Fresh water	PNEC Sediment	5.74 mg/kg sediment dw
Terrestrial Compartment	PNEC Soil	1.47 mg/kg soil dw
	PNEC STP	10 mg/L
alpha-methyl styrene (98-83-9)		I
Exposure	Туре	PNEC

Exposure	Туре	PNEC
Exposure	1,755	11120
Fresh water	PNEC Aqua	0.008 mg/L
Marine water	PNEC Aqua	0.001 mg/L
Intermittent use/release	PNEC Aqua	0.01645 mg/L
Fresh water	PNEC Sediment	0.583 mg/kg sediment
		dw
Marine water	PNEC Sediment	0.0583 mg/kg sediment
		dw
	PNEC Soil	0.112 mg/kg soil dw
	PNEC STP	66.15 mg/L
cobalt octoate (136-52-7)		I
Exposure	Туре	PNEC
Fresh water	PNEC Aqua	0.62 µg/L
Marine water	PNEC Aqua	2.36 µg/L
STP microorganisms	PNEC STP	0.37 mg/L
Fresh water	PNEC Sediment	53.8 mg/kg sediment
		dw
Marine water	PNEC Sediment	69.8 mg/kg sediment
		dw
Terrestrial Compartment	PNEC Soil	10.9 mg/kg soil dw

8.2. Exposure Controls

8.2.1. Occupational exposure controls

Engineering measures: Apply technical measures to comply with the occupational exposure limits. When working in confined spaces (tanks, containers, etc.), ensure that there is a supply of air suitable for breathing and wear the recommended equipment.

8.2.2. Personal protective equipment

General Information: Use personal protective equipment.

Respiratory protection:

Provide a good standard of general ventilation (not less than 3 to 5 air changes per hour)

If exposure limits are likely to be exceeded / In case of insufficient ventilation wear suitable respiratory equipment :

Breathing apparatus with filter Type A (Organic gases and vapours filter conforming to EN 14387, APF 40 < 1 hour, APF 200 > 1 hour) / Type A(2)/P3 in combination with Particulates filter conforming to EN 143, if exposed to dust.

Eye protection: Safety glasses with side-shields. Do not wear contact lenses.

Skin and body protection: Antistatic boots. Protective shoes or boots. Wear fire/flame resistant/retardant clothing.

Hand protection:

Wear chemically resistant gloves (tested to EN 374) in combination with 'basic' employee training

Glove material: Neoprene, Nitriles, Viton (R) or Polyvinyl alcohol Gloves should be discarded and replaced if there is any indication of degradation or chemical breakthrough.

Environmental exposure controls

Do not allow material to contaminate ground water system

9. Physical and Chemical Properties

9.1. Exposure Controls/Personal Protection

Property	Values	Remark
Physical state	Liquid	
Colour	Blue	
Appearance		No data available
Particle size		No data available

Revision date: 28-July-2023 1133843 Rev.1 www.tricelcomposites.co.uk

Odour	Pungent	
Odour Threshold	0.15 ppm	Values related to styrene
рН		No data available
pH (as aqueous solution)		No data available
Melting point/range	-30°C	Values related to styrene
Freezing Point		No data available
Softening point		No data available
Boiling point	100 - 146 °C	Values related to styrene
Flash point	26 °C	(ISO 3679)
Flammability		No data available
Upper	12.5%	Values related to styrene
Lower	1,1%	Values related to styrene
Vapour pressure	1hPakPa	@20 °C 25°C Values
		related to styrene
Vapour density	3.6 - 3.94 (Air = 1)	Values related to styrene
Density	1.08 - 1.12 g/cm3	23°C
Specific Gravity		No data available
Bulk density		No data available
Water solubility	Insoluble in water	
Solubility in other solvents	Soluble in most organic solvents	
Partition coefficient: n-octanol/water	3	Values related to styrene
Autoignition temperature	430 - 490 °C	(DIN 51794)
Decomposition temperature		No data available
Viscosity, kinematic	273 - 364 mm2/s	
Viscosity, dynamic	300 - 400 mPa.s	23 °C Brookfield Test Method

9.2. Other Information

9.2.1. Information with regards to physical hazard classes

Property	Values	Remark
Explosives		No data available
Flammable gases		No data available
Aerosols		No data available
Oxidising gases		No data available
Gases under pressure		No data available
Flammable liquids		No data available
Flammable solids		No data available
Pyrophoric liquids		No data available
Pyrophoric solids		No data available
Self-heating substances and mixture	98	No data available
Substances and mixtures which, in		No data available
contact with water, emit flammable gases		
Oxidising liquids		No data available
Oxidising solids		No data available
Oxidising Properties		No data available
Organic peroxides		No data available
Corrosive to metals		No data available
Desensitised explosives		No data available

9.2.2. Other safety characteristics

Property	Values	Remark
Sensitivity to Mechanical Impact		No data available
SAPT (self-accelerating		No data available
polymerisation temperature) Formation of explosible dust/air		No data available
mixtures Acid/alkaline reserve		No data available
Evaporation rate	0.49 3.1	(BuAc = 1)
Miscible Conductivity		No data available
Corrosiveness		No data available
Gas group		
Redox potential		
Photocatalytic properties		

10. Stability and Reactivity

10.1. Reactivity

Product may ignite and burn at temperatures exceeding the flash point

10.2. Chemical stability

Stable under recommended storage conditions.

10.3. Possibility of hazardous reactions

Hazardous reactions: In use, may form flammable/explosive vapour-air mixture. Hazardous polymerisation: Polymerisation can occur.

10.4. Conditions to avoid

- Heat, flames and sparks.
- Exposure to light.
- Take precautionary measures against static charges.

10.5. Incompatible materials

Strong oxidizing agents, Peroxides, Reducing agents.

10.6. Hazardous decomposition Products

Incomplete combustion and thermolysis produces potentially toxic gases such as carbon monoxide and carbon dioxide.

11. Toxicological Information

11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008

11.1.1. Inhalation

- Harmful: danger of serious damage to health by prolonged exposure through inhalation
- Irritating to respiratory system May produce an allergic reaction

11.1.2. Ingestion

Ingestion may cause gastrointestinal irritation, nausea, vomiting and diarrhoea

Chemical Name	LD50 Oral	LD50 Dermal	LC50 Inhalation	Read-across
				(Analogy)
Styrene 100-42-5	5000 mg/kg (Rat)	> 2000 mg/kg bw (Rat)	11.8 mg/L (Rat) 4h	
		24h OECD 402	CSR	
Methyl methacrylate	> 5000 mg/kg bw (Rat)	> 5000 mg/kg bw	29.8 mg/L (7093	
80-62-6	OECD 401	(Rabbit) OECD 402	ppm) (Rat) 4h	
			(vapor)	
			OECD 403	

alpha-methyl styrene	4900 mg/kg (Rat) OECD	14560 mg/kg bw	22.85 mg/L (Rat) 6h
98-83-9	GHS	(Rabbit) OECD GHS	Vapour 41600
			mg/m3 (Rat) 8h
			Vapour
Quaternary ammonium	344 mg/kg bw (Rat) No	3340 mg/kg bw	21500 mg/L (Rat) 1h
compounds,	guideline followed	(Rabbit) No guideline	No guideline
benzyl-C12-16-		followed	followed
alkyldimethy I,			
chlorides			
68424-85-1			
cobalt octoate 136-52-7	3129 mg/kg/bw (Rat)	> 2000 mg/kg bw (Rat)	
	OECD 425	OECD 402	

11.1.3. Skin corrosion/irritation

Chemical Name	Skin corrosion/irritation	Read-across (Analogy)
Styrene 100-42-5	Irritating to skin in vivo assay rabbit	
Methyl methacrylate 80-62-6	Irritating to skin rabbit Draize Test	
alpha-methyl styrene 98-83-9	Mild skin irritation rabbit Classification of corrosive hazards, Federal Register, Vol 37, No 57, § 173.240	
cobalt octoate 136-52-7	No skin corrosion in vitro study OECD 431 EU Method B. 40	

11.1.4. Serious Eye Damage/Eye Irritation

Chemical Name	Serious Eye Damage/Eye Irritation	Read-across (Analogy)
Styrene 100-42-5	Irritating to eyes	Styrene 100-42-5
	in vivo assay	
	rabbit	
Methyl methacrylate 80-62-6	Mild eye irritation	Methyl methacrylate
	rabbit	80-62-6
	Draize Test	

alpha-methyl styrene 98-83-9	Irritating to eyes	alpha-methyl styrene
	rabbit	98-83-9
cobalt octoate 136-52-7	Moderate eye irritation OECD 437	cobalt octoate 136-52-7
	EU Method B.47	
	Irritating to eyes	
	rabbit	
	OECD 405	

11.1.5. Respiratory or skin sensitisation

May produce an allergic reaction.

Chemical Name	Respiratory or skin sensitisation	Read-across (Analogy)
Styrene 100-42-5	Does not cause skin sensitization Does not cause	
	respiratory sensitization	
	CSR	
Methyl methacrylate 80-62-6	May cause sensitisation by skin contact mouse	
	OECD 429	
Propylidynetrimethanol 77-99-6	Does not cause skin sensitization in vivo assay	
	mouse	
	OECD 429	
alpha-methyl styrene 98-83-9	May cause sensitisation by skin contact mouse	
	OECD 429	
	EU Method B.42	
Quaternary ammonium	Does not cause skin sensitization in vivo assay	
compounds, benzyl-C12-16-	guinea pig	
alkyldimethyl, chlorides 68424-85-1	OECD 406	
cobalt octoate	May cause sensitisation by skin contact	
136-52-7	in vivo assay	
	mouse	
	OECD 429	

11.1.6. Mutagenic Effects

In vitro study

Chemical Name	Ames test	Read-across
		(Analogy)
Styrene 100-42-5	Ambiguous	
	In vitro gene mutation study in bacteria	
	(S. typhimurium G46, TA1530, TA 1535, TA100, TA98,	
	TA1538, TA 1537)	
	OECD 471	
Methyl methacrylate 80-62-6	negative	
	In vitro gene mutation study in bacteria OECD 471	
Duran di dun atsima atta ana di 77, 00, 0		
Propylidynetrimethanol 77-99-6	negative	
	In vitro gene mutation study in bacteria	
	(S. typhimurium TA 1535, TA 1537, TA 98 and TA 100)	
	(Escherichia coli WP2 uvrA)	
	OECD 471	
alpha-methyl styrene 98-83-9	negative	
	In vitro gene mutation study in bacteria	
	(S. typhimurium TA 1535, TA 1537, TA 98 and TA 100)	
	(Escherichia coli WP2 uvrA)	
	similar to OECD 471	
	OECD 472	
Quaternary ammonium	negative	
compounds, benzyl-C12-16-	In vitro gene mutation study in bacteria	
alkyldimethyl, chlorides 68424-85-1	Salmonella sp.	
	OECD 471	
cobalt octoate 136-52-7	negative	Cas Nº: 68956-82-1,
	In vitro gene mutation study in bacteria	14024-48-7
	(S. typhimurium TA 1535, TA 1537, TA 98, TA100 and	
	TA 102)	
	OECD 471	
Chemical Name	In vitro Mammalian Cell Gene Mutation Test	Read-across
		(Analogy)
		<u> </u>

Ot 100 40 F	A	
Styrene 100-42-5	Ambiguous	
	In vitro gene mutation study in mammalian cells	
	hamster	
	OECD 476	
Propylidynetrimethanol	negative	
77-99-6	In vitro gene mutation study in mammalian cells	
	hamster	
	OECD 476	
alpha-methyl styrene	negative	
98-83-9	In vitro gene mutation study in mammalian cells	
	hamster	
	similar to OECD 476	
cobalt octoate 136-52-7	negative	Cas N°: 7440-48-4,
	In vitro gene mutation study in mammalian cells	1308-06-1,
	mouse	10124-43-3, 12016-80-
	OECD 476	7
Chemical Name	In vitro Mammalian Chromosome Aberration Test	Read-across
		(Analogy)
Styrene 100-42-5	positive	
	Chromosome aberration test in vitro	
	OECD 473	
	OECD 479	
Propylidynetrimethanol	negative	
77-99-6	In vitro gene mutation study in mammalian cells	
	hamster	
	OECD 473	
alpha-methyl styrene	OECD 473	
alpha-methyl styrene 98-83-9	OECD 473 negative	
alpha-methyl styrene 98-83-9	OECD 473 negative In vitro gene mutation study in mammalian cells	
	negative In vitro gene mutation study in mammalian cells hamster	
98-83-9	OECD 473 negative In vitro gene mutation study in mammalian cells hamster similar to OECD 473	
98-83-9 Quaternary ammonium	negative In vitro gene mutation study in mammalian cells hamster similar to OECD 473 negative	
98-83-9 Quaternary ammonium compounds,	negative In vitro gene mutation study in mammalian cells hamster similar to OECD 473 negative Chromosome aberration test in vitro	
98-83-9 Quaternary ammonium compounds, benzyl-C12-16-alkyldimethyl,	negative In vitro gene mutation study in mammalian cells hamster similar to OECD 473 negative Chromosome aberration test in vitro Human lymphocytes	
98-83-9 Quaternary ammonium compounds,	negative In vitro gene mutation study in mammalian cells hamster similar to OECD 473 negative Chromosome aberration test in vitro	

In Vivo Assay

Chemical Name	Unscheduled DNA Synthesis (UDS)	Read-across (Analogy)
Styrene 100-42-5	negative	
	mouse	
	OECD 486	
	OECD 474	
Methyl methacrylate	negative	
80-62-6	mouse	
	OECD 478	
alpha-methyl styrene	negative	
98-83-9	mouse	
	similar to	
	OECD 474	
cobalt octoate	negative	Cas Nº: 68956-82-1,
136-52-7	rat	14024-48-7,
	OECD 474	10026-24-1
	OECD 475	

11.1.7. Carcinogenicity

Carcinogenicity				
Styrene (100-42-5)				
Routes of Exposure	Method	Species	Dose	Evaluation
Inhalation	OECD 453	rat	NOAEC systemic	negative
			(carcinogenicity) >=	
			4.34 mg/L air	
			(nominal)	
Inhalation	OECD 453	mouse	LOAEC	positive
			(carcinogenicity)	
			female/male = 0.09 -	
			0.18 mg/L air resp.,	
			NOAEC	
			(carcinogenicity)	
			male =	
			0.09 mg/L air	

		(male/female)	
		4.1	
		_	
		LOAEC (local toxicity)	
		=	
		2.05 mg/L air	
		(male/female)	
Noinformation	rat	NOAEC	negative
available		(carcinogenicity)	
		_	
		, and the second	
		NOAEC (systemic	
		toxicity)	
		>= 2.05 mg/L air	
		(male/female)	
		_	
		=	
		_	
		(male/female)	
		available	LOAEC (local toxicity) = 2.05 mg/L air (male/female) No information available NOAEC (carcinogenicity) >= 2.05 mg/L air (female) NOAEC (carcinogenicity) >= 4.1 mg/L air (male) NOAEC (systemic toxicity) >= 2.05 mg/L air (male/female) LOAEC (local toxicity) = 1.03 mg/L air (male/female)

Revision date: 28-July-2023

1133843 Rev.1

www.tricelcomposites.co.uk

Oral	similar to OECD 451	mouse rat	LOAEC (male/female)	negative
			105	
			weeks = 100 ppm	

11.1.8. Reproductive toxicity

Reproductivetoxicity		-		
Styrene (100-42-5)				
Routes of Exposure	Method	Species	Dose	Evaluation
Inhalation	Noinformation	rat	NOAEL/LOAEL (fertility)	positive
	available		60d = 100 - 200 mg/kg	
			bw/day	
Oral	OECD 422	rat	NOAEL/LOAEL (fertility)	positive
			60d = 200 - 400 mg/kg	
			bw/day	
nhalation	OECD 416	rat	NOAEC (P, F1) = 0.64	negative
			mg/L air	
			LOAEC (P, F1) = 2.13	
			mg/L air	
			NOAEC (F2) = 0.21 mg/L	
			air	
			LOAEC (F2) = 0.64 mg/L	
1			air (70d)	
Methyl methacrylate (8	30-62-6)			-1
Routes of Exposure	Method	Species	Dose	Evaluation
Oral	OECD 416	rat	NOAEL (general,	negative
			systemic	
			toxicity) = 50 mg/kg	
			bw/day (male/female)	
			NOAEL (fertility and	
			reproductive	
			performance)	
			= 400 mg/kg bw/day	
			(male/female)	
			NOAEL (developmenta	

			toxicity) = 400 mg/kg	
			bw/day (male/female))
Propylidynetrimethanol	 (77-99-6)			
				T
Routes of Exposure	Method	Species	Dose	Evaluation
Oral	OECD 443	rat	NOAEL (general	positive
			toxicity)	
			= 740 ppm	
			NOAEL (reproductive	
			toxicity) = 2200 ppm	
Dral	OECD 421	rat	NOAEL (parental,	negative
			reproduction &	
			developmental	
			toxicity) >	
			6000 ppm	
alpha-methyl styrene (98-83-9)			1
Coutes of Exposure	Method	Species	Dose	Evaluation
•	Method OECD 422	Species rat	Dose NOEL (parental	Evaluation negative
•				
•			NOEL (parental	
			NOEL (parental females)	
·			NOEL (parental females) = 200 mg/kg bw/day	negative
•			NOEL (parental females) = 200 mg/kg bw/day	negative
Dral			NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) =	negative
Dral	OECD 422	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day	negative
Dral	OECD 422	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day NOAEC (systemic	negative
Dral	OECD 422	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day NOAEC (systemic toxicity)	negative
Dral	OECD 422	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day NOAEC (systemic toxicity) male/female = 0.21	negative
Dral	OECD 422	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day NOAEC (systemic toxicity) male/female = 0.21 mg/L	negative
Routes of Exposure Oral Inhalation	OECD 422	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day NOAEC (systemic toxicity) male/female = 0.21 mg/L NOAEC (reproductive	negative
Oral	OECD 422	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day NOAEC (systemic toxicity) male/female = 0.21 mg/L NOAEC (reproductive toxicity) male/female	negative
Dral	oECD 422	rat	NOEL (parental females) = 200 mg/kg bw/day NOEL (parental males) = 1000 mg/kg bw/day NOAEC (systemic toxicity) male/female = 0.21 mg/L NOAEC (reproductive toxicity) male/female = 2.1	negative

Oral	Read-across	rat	NO(A)EL (P&F1) 28d =	positive
	(Analogy) Cas N°:		30	
	7440-48-4 OECD 422		mg/kg bw/day	

11.1.9. Developmental Toxicity

Suspected of damaging the unborn child.

Developmental Toxicity				
Styrene (100-42-5)				
Routes of Exposure	Method	Species	Dose	Evaluation
Inhalation	Noinformation	rat	NOAEC/LOAEC	positive
	available		(maternal toxicity +	
			developemental	
			toxicity) >50d = 1.08 -	
			2.15	
			mg/L air	
Inhalation	OECD 414	rat	LOAEC (maternal	positive
			toxicity)	
			6-15d = 1.28 mg/L air	
Inhalation	OECD 414	rat	NOAEC	negative
			(developmental	
			toxicity) 6-15d >= 2.56	
			mg/L air	
nhalation	OECD 414	rabbit	NOAEC (maternal	negative
			toxicity	
			+ developmental	
			toxicity) 6-18d = 2.56	
			mg/L air	
Methyl methacrylate (80	0-62-6)	1	<u>'</u>	_
Routes of Exposure	Method	Species	Dose	Evaluation
Inhalation	OECD 414	rat	LOEC (maternal	negative
			toxicity) =	
			0.41 mg/L air	
			NOAEC (fetotoxicity)	
			>=	

ĺ			8.3 mg/L air	
			NOAEC	
			(teratogenicity)	
			>= 8.3 mg/L air	
Oral	OECD 414	rabbit	NOAEL (maternal	negative
or an	0200 111	i destit	toxicity)	liogativo
			= 50 mg/kg bw/day	
			NOAEL (developmental	
			toxicity) = 450 mg/kg	
			bw/day	
Propylidynetrimethano	(77-99-6)		an, aa,	
. ropymaymotimmotinamo	(7, 55 5)			
Routes of Exposure	Method	Species	Dose	Evaluation
Oral	similar to OECD 414	rabbit	NOAEL (maternal &	negative
or an	Read-across	rassit	developmental	liogativo
	(Analogy)		toxicity) >=	
	Cas N°: 100-42-5		450 mg/kg bw/day	
alpha-methyl styrene (100g,g 2, a.a.,	
Routes of Exposure	Method	Species	Dose	Evaluation
Inhalation	similar to OECD 414	rat rabbit	LOAEC (maternal	positive
Inhalation		rat rabbit	LOAEC (maternal toxicity)	positive
Inhalation	similar to OECD 414	ratrabbit		positive
Inhalation	similar to OECD 414 Read-across	rat rabbit	toxicity)	positive
Inhalation	similar to OECD 414 Read-across (Analogy)	rat rabbit	toxicity) = 297 ppm	positive
Inhalation	similar to OECD 414 Read-across (Analogy)	ratrabbit	toxicity) = 297 ppm NOAEC	positive
Inhalation	similar to OECD 414 Read-across (Analogy)	rat rabbit	toxicity) = 297 ppm NOAEC (developmental	positive
Inhalation	similar to OECD 414 Read-across (Analogy)	ratrabbit	toxicity) = 297 ppm NOAEC (developmental toxicity) = 600 ppm	positive
Inhalation	similar to OECD 414 Read-across (Analogy)	rat rabbit	toxicity) = 297 ppm NOAEC (developmental toxicity) = 600 ppm LOAEL (maternal	positive
Inhalation	similar to OECD 414 Read-across (Analogy)	ratrabbit	toxicity) = 297 ppm NOAEC (developmental toxicity) = 600 ppm LOAEL (maternal toxicity)	
Inhalation	similar to OECD 414 Read-across (Analogy)	rat rabbit	toxicity) = 297 ppm NOAEC (developmental toxicity) = 600 ppm LOAEL (maternal toxicity) = 180 mg/kg bw/day	
Inhalation	similar to OECD 414 Read-across (Analogy)	ratrabbit	toxicity) = 297 ppm NOAEC (developmental toxicity) = 600 ppm LOAEL (maternal toxicity) = 180 mg/kg bw/day NOAEL (developmental	
Inhalation	similar to OECD 414 Read-across (Analogy)	ratrabbit	toxicity) = 297 ppm NOAEC (developmental toxicity) = 600 ppm LOAEL (maternal toxicity) = 180 mg/kg bw/day NOAEL (developmental toxicity) = 300 mg/kg	
Inhalation	similar to OECD 414 Read-across (Analogy)	ratrabbit	toxicity) = 297 ppm NOAEC (developmental toxicity) = 600 ppm LOAEL (maternal toxicity) = 180 mg/kg bw/day NOAEL (developmental toxicity) = 300 mg/kg bw/day	

11.1.10. Specific target organ toxicity Single Exposure

• May cause irritation of respiratory tract

STOT -single exposure				
alpha-methyl styrene (98-83-9)			
Routes of Exposure	Method	Species	Dose	Remarks
Inhalation	No information available		C >= 600 ppm	

11.1.11. Specific target organ toxicity Repeated Exposure

Causes damage to organs through prolonged or repeated exposure,
 target organ(s): Central nervous system, Ears

STOT - repeated exposu	re			
Styrene (100-42-5)				
Routes of Exposure	Method	Species	Dose	Remarks
Inhalation	OECD 412	rat mouse	NOAEC male (28d) =	
			3.47	
			mg/L air	
			NOAEC (ototoxicity)	
			28d =	
			2.13 mg/L air	
			NOAEC (28d) = 0.181	
			mg/L air	
			NOAEC (28d) = 0.688	
			mg/L air	
Inhalation	No information	rat	NOAEC (nasal tract) =	
	available		0.85 mg/L air	
			NOAEC (overall) = 2.13	
			mg/L air	
			NOAEC (ototoxicity) =	
			0.85 mg/L air	
			LOAEC (ototoxicity) =	

Revision date: 28-July-2023 1133843 Rev.1 www.tricelcomposites.co.uk

			3.41 mg/L air	
			NOAEC (overall) = 2.13	
			mg/L air	
Oral	No information	rat	NOAEL (toxicity) = 1000	
	available		mg/kg bw/day	
			LOAEL (toxicity) = 2000	
			mg/kg bw/day	
Oral	No information	mouse	NOAEL (toxicity) = 150	
	available		mg/kg bw /day	
			LOAEL (toxicity) = 300	
			mg/kg bw /day	
Inhalation	OECD 453	rat	LOAEC local (toxicity)	
			=	
			0.21 mg/L air	
Methyl methacrylate (80	0-62-6)		1	
Routes of Exposure	Method	Species	Dose	Remarks
Oral	OECD 453	rat	NOAEL (male/female)	
Oral	OECD 453	rat	NOAEL (male/female) >=	
Oral	OECD 453	rat		
Oral	OECD 453	rat	>=	
Oral	OECD 453	rat	>= 2000 ppm	
Oral	OECD 453	rat	>= 2000 ppm NOAEL (male) >= 124.1	
Oral	OECD 453	rat	>= 2000 ppm NOAEL (male) >= 124.1 mg/kg bw/day	
	OECD 453	rat	>= 2000 ppm NOAEL (male) >= 124.1 mg/kg bw/day NOAEL >= 164 mg/kg	
			>= 2000 ppm NOAEL (male) >= 124.1 mg/kg bw/day NOAEL >= 164 mg/kg bw/day	
Inhalation	OECD 453 available		>= 2000 ppm NOAEL (male) >= 124.1 mg/kg bw/day NOAEL >= 164 mg/kg bw/day NOAEC (90d) = 1000	
Inhalation alpha-methyl styrene (9	OECD 453 available		>= 2000 ppm NOAEL (male) >= 124.1 mg/kg bw/day NOAEL >= 164 mg/kg bw/day NOAEC (90d) = 1000 ppm	Remarks
Inhalation alpha-methyl styrene (9 Routes of Exposure	OECD 453 available 98-83-9)	rat	>= 2000 ppm NOAEL (male) >= 124.1 mg/kg bw/day NOAEL >= 164 mg/kg bw/day NOAEC (90d) = 1000 ppm Dose	Remarks
Inhalation alpha-methyl styrene (9) Routes of Exposure Inhalation	OECD 453 available 08-83-9) Method	rat	>= 2000 ppm NOAEL (male) >= 124.1 mg/kg bw/day NOAEL >= 164 mg/kg bw/day NOAEC (90d) = 1000 ppm	Remarks
Inhalation alpha-methyl styrene (9 Routes of Exposure	OECD 453 available 08-83-9) Method	rat	>= 2000 ppm NOAEL (male) >= 124.1 mg/kg bw/day NOAEL >= 164 mg/kg bw/day NOAEC (90d) = 1000 ppm Dose NOAEC (male/female)	Remarks
Inhalation alpha-methyl styrene (9 Routes of Exposure	OECD 453 available 08-83-9) Method OECD 453	rat	>= 2000 ppm NOAEL (male) >= 124.1 mg/kg bw/day NOAEL >= 164 mg/kg bw/day NOAEC (90d) = 1000 ppm Dose NOAEC (male/female) 14	Remarks

Revision date: 28-July-2023

1133843 Rev.1

www.tricelcomposites.co.uk

Oral	Read-across	rat	NOAEL (90d) = 3 mg/kg	
	(Analogy) cobalt		bw/day	
	dichloride			
	hexahydrate OECD 408			

11.1.12. Aspiration hazard

Due to the viscosity, this product does not present an aspiration hazard.

11.2. Information on other hazards

- Endocrine disrupting properties: No information available
- Other information: None

12. Ecological Information

12.1. Toxicity

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do not flush into surface water or sanitary sewer system

12.1.1. Acute aquatic toxicity - Component Information

Toxicity to algae	Toxicity to daphnia	Toxicity to fish	Toxicity to
	and other aquatic		microorganisms
	invertebrates.		
EC50 (72h) = 4.9 mg/L	EC50 (48h) = 4.7 mg/L	LC50 (96h) = 4.02 -	EC (30min) = 500 mg/L
(Pseudokirchnerella	(Daphnia magna)	10	(Activated sludge of a
subcapitata)	NOEC = 1.9 mg/L	mg/L (Pimephales	predominantly
EPA OTS 797.1050	(Daphnia magna)	promelas) OECD 203	domestic sewage)
	OECD 202		OECD 209
EC50 (72h) > 110 mg/L	EC50 (48h) = 69 mg/L	LC50 (96h) = 79	EC3 (16h) = 100 mg/L
(Selenastrum	(Daphnia magna)	mg/L	(Pseudomonas putida)
capricornutum)	OECD 202	(Oncorhynchus	inhibition test,
OECD 201		mykiss)	Bringmann-Kühn
		OECD 203	
	EC50 (72h) = 4.9 mg/L (Pseudokirchnerella subcapitata) EPA OTS 797.1050 EC50 (72h) > 110 mg/L (Selenastrum capricornutum)	and other aquatic invertebrates. EC50 (72h) = 4.9 mg/L	and other aquatic invertebrates. EC50 (72h) = 4.9 mg/L

			(()
alpha-methyl		EC50 (48h) = 1.645		EC10 (3h) = 661.5 mg/L
styrene	(Desmodesmus	mg/L	mg/L	(Activated sludge of a
98-83-9	subspicatus)	(Daphnia magna)	(Danio rerio)	predominantly
	NOEC (72h) = 2.26 mg/L	EC10 (48h) = 0.99	NOEC (96h) = 2.13	domestic
	(Desmodesmus	mg/L	mg/L	sewage)
	subspicatus)	(Daphnia magna)	(Danio rerio)	EC50 (3h) > 2 000 mg/L
	LOEC (72h) = 8.3 mg/L	NOEC (48h) = 0.64	LOEC (96h) = 3.19	(Activated sludge of a
	(Desmodesmus	mg/L	mg/L	predominantly
	subspicatus)	(Daphnia magna)	(Danio rerio)	domestic
	OECD 201, EU Method C.3	LOEC (48h) = 1.21 mg/L	OECD 203, EU	sewage)
		(Daphnia magna)	Method C.1	OECD 209, EU Method
		OECD 202, EU Method		C.11
		C.2		
Quaternary	ErC50 (72h) = 0.049 mg/L	EC50 (48h) = 0.016	LC50 (96h) = 0.28	EC50 = 7.75 mg/L
ammonium	(Pseudokirchneriella	mg/L	mg/L	(Activated sludge)
compounds,	subcapitata)	(Daphnia magna)	(Pimephales	OECD 209
benzyl-C12-16-	OECD 201	OECD 202	promelas)	
alkyldimethy			US-EPA	
I, chlorides				
68424-85-1				
cobalt octoate 136-	EC50 (72h) = 144 µg		LC50 (96h) = 1.512	EC10 (30 min) = 3.73
52-7	Codiss./L		mg/L	mg/L (Activated
	(Pseudokirchneriella		(Oncorhynchus	sludge)
	subcapitata)		mykiss) NOEC (96h)	EC50 (30 min) = 120
	NOEC (72h) = 32.2 μg./L		= 0.939 mg/L	mg/L (Activated
	(Pseudokirchneriella		(Oncorhynchus	sludge)
	subcapitata)		mykiss) LOEC (96h)	Read across with Cas
	LOEC (72h) = 52.7 µg		= 1.577 mg/L	N°: 7646-79-9
	Codiss./L		(Oncorhynchus	OECD 209
	(Pseudokirchneriella		mykiss) ASTM	
	subcapitata)		guideline (1996)	
	OECD 201			

12.1.2. Chronic aquatic toxicity - Component Information

Chemical Name	Toxicity to algae	Toxicity to daphnia	Toxicity to fish	Toxicity to
		and other aquatic		microorganisms
		invertebrates.		
Styrene 100-42-5		NOEC (21d) = 1.01 mg/L		
		(Daphnia magna)		
		LOEC (21d) = 2.06		
		mg/L		
		(Daphnia magna)		
		EC50 (21d) = 1.88 mg/L		
		(Daphnia magna)		
		OECD 203		
Methyl methacrylate	NOEC (72h) = 49 mg/L	NOEC (21d) = 37 mg/L	NOEC (35d) = 9.4	NOEC (28d) > 1000
80-62-6	(Selenastrum	(Daphnia magna)	mg/L,	mg/kg
	capricornutum)	OECD 211	LOEC (35d) = 18.8	soil dw
	OECD 201		mg/L	OECD Chemicals
			(Danio rerio)	Testing
			OECD 210	Program UPEC/3
alaba methyl etyrene		NOEC (21d) = 0.401		
alpha-methyl styrene				
98-83-9		mg/L (Daphnia magna)		
		LC50 (21d) = 1.56 mg/L		
		(Daphnia magna)		
		EC50 (21d) = 1.11 mg/L		
		(Daphnia magna)		
		OECD 211		
cobalt octoate 136-52-7				
		μg./L		
		(Daphnia magna)		
		LC50 (21d) = 121.3		
		mg/L		
		(Daphnia magna)		
		LOECR (21d) = 93.3 µg		
		Codiss./L (Daphnia		
		magna)		
		OECD 211		

12.1.3. Effects on terrestrial organisms - Component Information

Acute toxicity				
Quaternary ammonium co	mpounds, benzyl	-C12-16-alkyldimethy	yl, chlorides (68424-85-	1)
Acute toxicity	Test Method	Species	Values	Remarks
Other plants	OECD 208	No information	EC50 = 277 - 1900	
		available	mg/kg	
			bw (14d)	
Chronic toxicity	•		•	
Styrene (100-42-5)				
Chronic toxicity	Method	Species	Values	Remarks
Toxicity to invertebrates	OECD 207	Eisenia foetida	LC50 (14d) = 120	
			mg/kg soil dw	
			LOEC (burrowing	
			time and mean	
			percent weight	
			change) = 65 mg/kg	3
			soil dw	
			LOEC (survival) =	
			180 mg/kg soil dw	
			NOEC (mean	
			percent weight	
			change) = 34	
			mg/kg soil dw	
Quaternary ammonium co	mpounds, benzyl	-C12-16-alkyldimethy	yl, chlorides (68424-85-	1)
Chronic toxicity	Test Method	Species	Values	Remarks
Foxicity to soil dwelling	OECD 216	Soil	EC50 > 1000 mg/kg	
organisms.			bw	
			(28d)	
Foxicity to terrestrial	OECD 207	Eisenia foetida	LC50 = 7070 mg/kg	
organisms.			bw	
			(14d)	

Revision date: 28-July-2023

1133843 Rev.1

Page **35** of **43**

12.2. Persistence and Degradability

Chemical Name	Degradation	Evaluation
Propylidynetrimethanol 77-99-6	DT50 > 1 year (25°C)	Stable
alpha-methyl styrene 98-83-9	Stable (pH = 4, 7, 9) 25°C OECD 111	Stable

Chemical Name	Biodegradation	Evaluation
Styrene	87% (20d) similar to OECD 301D	Readily Biodegradable
100-42-5		
Methyl methacrylate	94.3 % (14d)	Readily Biodegradable
80-62-6	OECD 301 C	
Propylidynetrimethanol	6% (28d)	Not Readily Biodegradable
77-99-6	Similar to OECD 301 E	
alpha-methyl styrene	21% (28d)	Not Readily Biodegradable
98-83-9	OECD 301F, EU Method C.4-D	
	56% (28d)	
	OECD 301D, EU Method C.4-E	
Quaternary ammonium	95.5% (28d) OECD 301B	Readily Biodegradable
compounds,		
benzyl-C12-16-alkyldimethyl,		
chlorides		
68424-85-1		
cobalt octoate	60% (>10d), OECD 301 B	Readily Biodegradable
136-52-7		

12.3. Bio-accumulative potential

Bioconcentration factor (BC	F)	
Styrene (100-42-5)		
Method	Species	Bioconcentration factor (BCF)
Calculation method		74
Methyl methacrylate (80-62	2-6)	I

Method	Species	Bioconcentration factor (BCF)
Calculation method QSAR		2.97
Propylidynetrimethanol (7	77-99-6)	I
Method	Species	Bioconcentration factor (BCF)
OECD 305 C	Cyprinus carpio	BCF < 17
alpha-methyl styrene (98	1-83-9)	
Method	Species	Bioconcentration factor (BCF)
OECD 305 C	Cyprinus carpio	BCF (56d) = 15 - 140 (25°C) C = 0.3 mg/L BCF (56d) = 12 - 113 (25°C) C = 0.03 mg/L

Chemical Name	log Pow
Styrene 100-42-5	3
Methyl methacrylate 80-62-6	1.38
Propylidynetrimethanol 77-99-6	-0.47
alpha-methyl styrene 98-83-9	3.48

12.4. Mobility in Soil

Chemical Name	LogKoc	Кос
Styrene 100-42-5	2.55	352
Methyl methacrylate 80-62-6	0.94 - 1.86	-
alpha-methyl styrene 98-83-9	2.84	892

12.5. Results in PBT and vPvB Assessment

Chemical Name	PBT	vPvB

Styrene 100-42-5	This substance is not considered to be This substance is not consi		
	persistent, bioaccumulating nor toxic	to be very persistent nor very	
	(РВТ).	bioaccumulating (vPvB).	
Methyl methacrylate	This substance is not considered to be	This substance is not considered	
80-62-6	persistent, bioaccumulating nor toxic	to be very persistent nor very	
	(PBT).	bioaccumulating (vPvB).	
Propylidynetrimethanol	This substance is not considered to be	This substance is not considered	
77-99-6	persistent, bioaccumulating nor toxic	to be very persistent nor very	
	(PBT).	bioaccumulating (vPvB).	
alpha-methyl styrene	This substance is not considered to be	This substance is not considered	
98-83-9	persistent, bioaccumulating nor toxic	to be very persistent nor very	
	(PBT).	bioaccumulating (vPvB).	

12.6. Endocrine disrupting Properties

No information available

12.7. Other Adverse Effects

None known

13. Disposal Considerations

13.1. Waste from Residues/Unused Products

Dispose of in accordance with the European Directives on waste and hazardous waste. Do not flush into surface water or sanitary sewer system

13.2. Contaminated Packaging

Empty containers should be taken to an approved waste handling site for recycling or disposal.

13.3. Other information

- According to the European Waste Catalogue, Waste Codes are not product specific, but application specific.
- Waste codes should be assigned by the user based on the application for which the product was used.

14. Transport Information

14.1. UN number or ID number

ADR/RID UN1866

IMDG/IMO UN1866

ICAO/IATA UN1866

ADN UN1866

14.2. 14.2. UN number or ID number

ADR/RID Resin solution: UN1866, RESIN SOLUTION, 3, PG III, (D/E)

• IMDG/IMO Resin solution; UN1866, RESIN SOLUTION, 3, PG III, (31°C c.c.)

ICAO/IATA: UN1866, RESIN SOLUTION, 3, PG III

ADN: Resin solution; UN1866, RESIN SOLUTION, 3, PG III

14.3. Transport hazard class(es)

ADR/RID Hazard class 3

• IMDG/IMO Hazard class 3

ICAO/IATA Hazard class 3

ADN Hazard class 3

14.4. 14.4. Packing group

• ADR/RID III

• IMDG/IMO III

· ICAO/IATA III

• ADN III

14.5. 14.5. Environmental hazards

ADR/RID No

• IMDG/IMO No

• Marine pollutant No

ICAO/IATA No

ADN No

14.6. 14.6. Special precautions for user

ADR/RID

• Classification Code F1

• Tunnel restriction code (D/E)

Limited quantity 5 L

IMDG/IMO

• EmS F-E, S-E

Limited quantity 5 L

ICAO/IATA

ERG Code 3L

Limited quantity 10 L

ADN

• Classification Code F1

Limited quantity 5 L

ventilation VE01

Special precautions for users: No information available

14.7. 14.7. Maritime transport in bulk according to IMO instruments

Transport in bulk according to Annex II of MARPOL and the IBC Code not applicable

15. Regulatory Information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Regulation (EC) No. 1907/2006 (REACH)

Regulation (EC) No. 1272/2008 (CLP)

Regulation (EU) No. 2020/878

Directive 88/642/EEC

Directive 98/24/EC

Directive 1999/92/EC

Directive 2012/18/EU

The mixture is subject to restrictions on use, see Annex XVII of the Regulation

1907/2006/EC (REACH): Column 1, n° 3; Column 1, n° 40.

European Union

National regulatory information The United Kingdom

Avoid exceeding of the given occupational exposure limits (see section 8).

Ireland

Avoid exceeding of the given occupational exposure limits (see section 8).

Revision date: 28-July-2023 1133843 Rev.1 www.tricelcomposites.co.uk

15.2. Chemical safety assessment

Chemical Safety Assessment Yes

Exposure scenario Relevant information for risk control are

communicated in the form of exposure

scenario attached to the safety data sheet.

16. Other Information

16.1. Full text of H-Statements referred to under sections 2 and 3

H226 -	Flammable	liquid and	vapour
--------	-----------	------------	--------

H302 - Harmful if swallowed

H304 - May be fatal if swallowed and enters airways

H315 - Causes skin irritation

H317 - May cause an allergic skin reaction

H318 - Causes serious eye damage

H319 - Causes serious eye irritation

H332 - Harmful if inhaled

H334 - May cause allergy or asthma symptoms or breathing difficulties if inhaled

H335 - May cause respiratory irritation

H360Fd - May damage fertility. Suspected of damaging the unborn child

H361d - Suspected of damaging the unborn child

H372 - Causes damage to organs through prolonged or repeated exposure if inhaled

H400 - Very toxic to aquatic life

H412 - Harmful to aquatic life with long lasting effects

H413 - May cause long lasting harmful effects to aquatic life

EUH208 - May produce an allergic reaction

Training Advice: Handle in accordance with good industrial hygiene and safety practice. To avoid risks to man and the environment, comply with the instructions for use.

16.2. Sources of key data used to compile the datasheet: ECHA

- Former date 18 Nov 2021
- Revision date 28-Jul-2023

Revision Note: New ANNEX II Regulation (EU) No. 2020/878

This safety data sheet complies with the requirements of Regulation (EC) No. 1907/2006

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

End of Safety Data Sheet